Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giá trị ft của sự phân rã beta Fermi siêu cho phép
Tóm tắt
Trong công trình này, các giá trị ft của các quá trình phân rã beta Fermi siêu cho phép 0+→0+ đã được nghiên cứu. Trong các phép tính, mô hình vỏ đã được sửa đổi bằng phương pháp phục hồi của Pyatov do sự phá vỡ đồng các và các phần tử ma trận chuyển tiếp đã được xác định bằng phương pháp gần đúng pha ngẫu nhiên quasi-particle (QRPA).
Từ khóa
Tài liệu tham khảo
Wilkinson D H. Isospin in Nuclear Physics. Amsterdam: North-Holland, 1969. 115–172
Hardy J C, Towner I S. Superallowed 0+→0+ nuclear β decays: A critical survey with tests of the conserved vector current hypothesis and the standard model. Phys Rev C, 2005, 71: 055501
Towner I S, Hardy J C. Superallowed 0+→0+ nuclear β-decays. Nucl Phys A, 1973, 205: 33–55
Hardy J C, Towner I S. Superallowed 0+→0+ nuclear β-decays and Cabibbo universality. Nucl Phys A, 1975, 254: 221–240
Towner I S, Hardy J C, Harvey M. Analogue symmetry breaking in superallowed fermi β-decay. Nucl Phys A, 1977, 284: 269–281
Towner I S, Hardy J C. Calculated corrections to superallowed Fermi β decay: New evaluation of the nuclear-structure-dependent terms. Phys Rev C, 2002, 66: 035501
Towner I S, Hardy J C. Improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi β decay. Phys Rev C, 2008, 77: 025501
Hardy J C, Towner I S. Superallowed 0+→0+ nuclear β decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model. Phys Rev C, 2009, 79: 055502
Hardy J C, Towner I S. Superallowed nuclear β decay: Symmetry breaking, CVC and CKM unitarity. Nucl Phys A, 2010, 844: 138c–142c
Towner I S, Hardy J C. The evulation of V ud and its impact on the unitarity of the Cabbibo-Kobayashi-Maskawa quark-mixing matrix. Rep Prog Phys, 2010, 73: 046301
Ormand W E, Brown B A. Corrections to the Fermi matrix element for superallowed β decay. Phys Rev Lett, 1989, 62: 866–869
Ormand W E, Brown B A. Isospin-mixing corrections for fp-shell Fermi transitions. Phys Rev C, 1995, 52: 2455–2460
Barker F C. On the nuclear-mismatch correction for superallowed 0+ → 0+ beta decays. Nucl Phys A, 1992, 537: 134–146
Barker F C. Calculated values of the nuclear-mismatch correction for superallowed 0+→0+ beta decays. Nucl Phys A, 1994, 579: 62–74
Sagava H, Van Giai N, Suzuki T. Effect of isospin mixing on superallowed Fermi β decay. Phys Rev C, 1996, 53: 2163–2170
Navrátil P, Barrett B R, Ormand W E. Large-basis shell-model calculation of the 10C→10B Fermi matrix element. Phys Rev C, 1997, 56: 2542–2548
Satula W, Dobaczewski J, Nazarewicz W, et al. Isospin mixing in nuclei arround N ≈ Z and superallowed beta decay. Acta Phys Pol B, 2011, 42: 415–425
Satula W, Dobaczewski J, Nazarewicz W, et al. Microscopic calculations of isospin-breaking corrections to superallowe beta decay. Phys Rev Lett, 2011, 106: 132502
Wilkinson D H. The mismatch problem in super-allowed Fermi β-decay. Phys Lett B, 1976, 65: 9–11
Wilkinson D H. Methodology for superallowed Fermi beta-decay Part III. Analysis. Nucl Instrum Methods A, 1993, 335: 201–218
Wilkinson D H. Super-allowed Fermi beta-decay revisited. Nucl Instrum Methods A, 2002, 488: 654–669
Grinyer G F, Svensson C E, Brown B A. Extraction of Vud from superallowed Fermi beta decay by the Wilkinson techniques. Nucl Instrum Methods A, 2010, 622: 236–245
Liang H, Van Giai N, Meng J. Spin-isospin resonances: A self-consistent covariant description. Phys Rev Lett, 2008, 101: 122502
Liang H, Van Giai N, Meng J. Isospin corrections for Fermi β decay in self-consistent relativistic random-phase approximation approaches. Phys Rev C, 2009, 79: 064316
Çalık A E, Gerçeklioğlu M, Salamov D I. Superallowed Fermi beta decay and the unitarity of the CKM matrix. Z Naturforsch, 2009, 64a: 865–871
Bohr A, Mottelson B. Nuclear Structure Volume I: Single-Particle Model. New York: W A Benjamin Inc, 1969
Pyatov N I, Salamov D I. Conservation laws and collective exciations in nuclei. Nukleonika, 1977, 22: 127–141.
Pyatov N I, Salamov D I, Baznat M I, et al. Self-consistent theory of Coulomb isospin mixing in nuclei. Sov J Nucl Phys, 1979, 29: 10–17
Babacan T, Salamov D, Kücükbursa A, et al. The effect of the pairing interaction on the energies of isobar analogue resonances in 112-124Sb and isospin admixture in 100-124Sn isotopes. J Phys G, 2004, 30: 759–770
Kucukbursa A, Salamov D I, Babacan T, et al. An investigation of the influence of the pairing correlations on the properties of the isobar analog resonances in A=208 nuclei. Pramana, 2004, 63: 947–961
Babacan T, Salamov D I, Kucukbursa A. Gamow-Teller 1+ states in 208Bi. Phys Rev C, 2005, 71: 037303
Salamov D I, Babacan T, Kücükbursa A, et al. The isospin admixture of the ground state and the properties of the isobar resonances in medium and heavy nuclei. Pramana, 2006, 66: 1105–1110
Babacan T, Salamov D I, Kucukbursa A. Self-consistent calculations of isospin admixtures in the ground states of the N=Z nuclei in the mass region of 50-100. Nucl Phys A, 2007, 788: 279c–283c
Çakmak N, Ünlü S, Selam C. Low-lying Gamow-Teller transitions in spherical nuclei. Phys Atom Nucl, 2012, 75: 8–16
Soloviev V G. Theory of Complex Nuclei. New York: Pergamon, 1976