The foundations of a unified approach to mathematical modelling of angiogenesis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson A.R.A., Sleeman B.D., Young I.M., Griffiths B.S. and Robertson W., Nematode movement along a gradient in a structurally heterogeneous environment II: Theory, Fundamental and Applied Nematology, 20, 165–172 (1997)
Burri P.H., Hlushchuk R. and Djonov V.G., Intussusceptive angiogenesis: Its emergence, its characteristics and its significance, Development Dynamics, 231, 474–488 (2004)
Chaplain M.A.J. and Anderson A.R.A.,Modelling the growth and form of capillary networks, In: On growth and form, (Eds.) Chaplain M.A.J., Singh G.D. and McLachlan J.C., Wiley: New York, 225–249 (1999)
Chaplain M.A.J. and Stuart A.M., A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10, 149–168 (1993)
Ferrara N., Gerber H.P. and LeCouter J., The Biology of VEGF and its Receptors, Nat. Med., 9, 669–676 (2003)
Harper S.J. and Bates D.O., VEGF-A splicing: the key to antiangiogenic therapeutics? Nat. Rev. Cancer, 8, 880–887 (2008)
Heissig B., Hattori K., Dias S., Friedrich M., Ferris B., Hackett N.R., et al., Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche requires MMP-9 mediated release of Kit-ligand, Cell, 109 625–637 (2002)
Hill N.A. and Häder D.P., A Biased Random Walk Model for the Trajectories of Swimming Micro-organisms, J. Theor. Biol., 186, 503–526, (1997)
Hillen F. and Griffioen A.W., Tumour vascularization: Sprouting angiogenesis and beyond, Cancer Metastasis Rev., 26, 489–502, (2007)
Holash J., Maisonpierre P.C., Compton D., Boland P., Alexander C.R, Zagzag D., et al., Vessel Cooption, Regression and Growth in Tumors mediated by Angiopoietins and VEGF, Science, 284, 1994–1998, (1999)
Levine H.A. and Sleeman B.D., A System of Reaction Diffusion Equations arising in the Theory of Reinforced Random Walks, SIAM J. Appl. Math., 57, 683–730, (1997)
Levine H.A., Sleeman B.D. and Nilsen-Hamilton M., Mathematical Modelling of the onset of Capillary formation initiating Angiogenesis, J. Math. Biol., 42, 195–238, (2001)
Levine H.A., Pamuk S., Sleeman B.D. and Nilsen-Hamilton M., A Mathematical Model of Capillary Formation and Development in Tumour Angiogenesis: Penetration into the Stroma, Bull. Math. Biol., 63, 801–863, (2001)
Mil’shtein G.N., Approximate integration of stochastic differential equations, Theory Prob. Appl., 19, 557–562, (1974)
Pepper M.S. and Skobe M., Lymphatic endothelium: Morphological, molecular and functional properties, Journal of Cell Biology, 163, 209–213, (2003)
Plank M.J. and Sleeman B.D., A Reinforced Random Walk Model of Tumour Angiogenesis and Anti-Angiogenic Strategies, IMA J. Math. Med. Biol., 20, 135–181, (2003)
Plank M.J. and Sleeman B.D., Lattice and Non-Lattice Models of Tumour Angiogenesis, Bull. Math. Biol., 66, 1785–1819, (2003)
Othmer H.G. and Stevens A., Aggregation, Blow-up and Collapse: The ABC’s of Taxis and Reinforced Random Walks, SIAM J. Appl. Math., 57, 1044–1081, (1997)
Sleeman B.D. and Wallis I.P., Tumour Induced Angiogenesis as a Reinforced Random Walk: Modelling Capillary Network Formation without Endothelial Cell Proliferation, J. Math. Comp. Modelling, 36, 339–358, (2002)
Stokes C.L. and Lauffenberger D.A., Analysis of the Roles of Microvessel Endothelial Cell Random Motility and Chemotaxis in Angiogenesis, J. Theor. Biol., 152, 377–403, (1991)