The formation of microbial-metazoan bioherms and biostromes following the latest Permian mass extinction

Gondwana Research - Tập 61 - Trang 187-202 - 2018
Katrin Heindel1, William J. Foster2, Sylvain Richoz3,4, Daniel Birgel5, Vanessa Julie Roden6, Aymon Baud7, Rainer Brandner8, Leopold Krystyn9, Tayebeh Mohtat10, Erdal Koşun11, Richard J. Twitchett12, Joachim Reitner13, Jörn Peckmann5
1Department of Geodynamics and Sedimentology, University of Vienna, Austria
2Jackson School of Geosciences, University of Texas at Austin, TX, USA
3Institute of Earth Sciences, University of Graz, NAWI Graz, Austria
4Department of Geology, Lund University, Sweden
5Institute for Geology, Center for Earth System Research and Sustainability, University of Hamburg, Germany
6GeoZentrum Nordbayern - Section Paleobiology, University of Erlangen-Nürnberg, Germany
7Parc de la Rouvraie 28, 1018 Lausanne, Switzerland
8Institute of Geology and Paleontology, University of Innsbruck, Austria
9Department for Paleontology, University of Vienna, Austria
10Geological Survey of Iran, Tehran, Iran
11Department of Geological Engineering, Akdeniz University, Antalya, Turkey
12Department of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom
13Geobiologie, GZG, University of Göttingen, Germany

Tài liệu tham khảo

Angiolini, 2007, Brachiopods and other fossils from the Permo-Triassic boundary beds of the Antalya Nappes (SW Taurus, Turkey), Geobios, 40, 715, 10.1016/j.geobios.2007.01.007 Bagherpour, 2017, Onset, development, and cessation of basal Early Triassic microbialites (BETM) in the Nanpanjiang pull-apart Basin, South China Block, Gondwana Research, 44, 178, 10.1016/j.gr.2016.11.013 Baud, 1997, Biotic response to mass extinction: the Lowermost Triassic microbialites, Facies, 36, 238 Baud, 2005, Calcimicrobial cap rocks from the basal Triassic units: western Taurus occurrences (SW Turkey), Comptes Rendus Palevol, 4, 501, 10.1016/j.crpv.2005.03.001 Baud, 2007, The Lower Triassic anachronistic carbonate facies in space and time, Global and Planetary Change, 55, 81, 10.1016/j.gloplacha.2006.06.008 Baumgartner, 2006, Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries, Sedimentary Geology, 185, 131, 10.1016/j.sedgeo.2005.12.008 Bebout, 1995, UV B-induced vertical migrations of cyanobacteria in a microbial mat, Applied and Environmental Microbiology, 61, 4215, 10.1128/AEM.61.12.4215-4222.1995 Becker, 2016, Unusual butane- and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens, Applied and Environmental Microbiology, 82, 4505, 10.1128/AEM.00772-16 Bernhard, 2013, Insights into foraminiferal influences on microfabrics of microbialites at Highborne Cay, Bahamas, Proceedings of the National Academy of Sciences of the United States of America, 110, 9830, 10.1073/pnas.1221721110 Birgel, 2006, Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California, Organic Geochemistry, 37, 1289, 10.1016/j.orggeochem.2006.02.004 Birgel, 2008, 13C-depleted biphytanic diacids as tracers of past anaerobic oxidation of methane, Organic Geochemistry, 39, 152, 10.1016/j.orggeochem.2007.08.013 Blumenberg, 2006, Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio), Environmental Microbiology, 8, 1220, 10.1111/j.1462-2920.2006.01014.x Blumenberg, 2015, Organic matter preservation in the carbonate matrix of a recent microbial mat - is there a ‘mat seal effect’, Organic Geochemistry, 87, 25, 10.1016/j.orggeochem.2015.07.005 Blumer, 1971, Hydrocarbons of marine phytoplankton, Marine Biology, 8, 183, 10.1007/BF00355214 Bosak, 2007, A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites, Geobiology, 5, 119, 10.1111/j.1472-4669.2007.00104.x Bowerbank, 1864, vol. 1 Bray, 1957, An ordination of the upland forest communities of southern Wisconsin, Ecological Monographs, 27, 326, 10.2307/1942268 Brayard, 2011, Transient metazoan reefs in the aftermath of the end-Permian mass extinction, Nature Geoscience, 4, 693, 10.1038/ngeo1264 Brocks, 2005, Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea, Nature, 437, 866, 10.1038/nature04068 Bühring, 2009, A hypersaline microbial mat from the Pacific Atoll Kiritimati: insights into composition and carbon fixation using biomarker analyses and a 13C-labeling approach, Geobiology, 7, 308, 10.1111/j.1472-4669.2009.00198.x Cao, 2009, Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event, Earth and Planetary Science Letters, 281, 188, 10.1016/j.epsl.2009.02.012 Chen, 2011, Molecular records of microbialites following the end-Permian mass extinction in Chongyang, Hubei Province, South China, Palaeogeography Palaeoclimatology Palaeoecology, 308, 151, 10.1016/j.palaeo.2010.09.010 Clarke, 2006 Clarke, 2001 Collin, 2015, Geochemistry of post-extinction microbialites as a powerful tool to assess the oxygenation of shallow marine water in the immediate aftermath of the end-Permian mass extinction, International Journal of Earth Sciences, 104, 1025, 10.1007/s00531-014-1125-3 Cranwell, 1987, Lipids of aquatic organisms as potential contributors to lacustrine sediments-II, Organic Geochemistry, 11, 513, 10.1016/0146-6380(87)90007-6 Crasquin, 2009, The Permian-Triassic transition in the Southwestern Taurus Mountains (South Turkey) Crasquin-Soleau, 2002, The events of the Permian-Trias boundary: last survivors and/or first colonisers among the ostracods of the Taurides (southwestern Turkey), Comptes Rendus Palevol, 334, 489 Dawson, 2012, Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions, Organic Geochemistry, 48, 1, 10.1016/j.orggeochem.2012.04.003 Deaton, 1996, Spectral reflectance of conodonts; a step toward quantitative color alteration and thermal maturity indexes, AAPG Bulletin, 80, 999 DeMello, 2007, Biodegradation and environmental behavior of biodiesel mixtures in the sea: an initial study, Marine Pollution Bulletin, 54, 894, 10.1016/j.marpolbul.2007.02.016 Dupraz, 2005, Microbial lithification in marine stromatolites and hypersaline mats, Trends in Microbiology, 13, 429, 10.1016/j.tim.2005.07.008 Edgcomb, 2014, Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay), Australia, The ISME Journal, 8, 418, 10.1038/ismej.2013.130 Eglinton, 1968, Gas chromatographic—mass spectrometric studies of long chain hydroxy acids—II, Tetrahedron, 24, 5929, 10.1016/S0040-4020(01)90979-2 Eickhoff, 2013, Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium Rhodopseudomonas palustris strain TIE-1, Geobiology, 11, 268, 10.1111/gbi.12033 Erwin, 1993 Fagerstrom, 1987 Forel, 2013, The Permian–Triassic mass extinction: ostracods (Crustacea) and microbialites, Comptes Rendus Palevol, 2, 203 Forel, 2015, Heterochronic growth of ostracods (Crustacea) from microbial deposits in the aftermath of the end-Permian extinction, Journal of Systematic Palaeontology, 13, 315, 10.1080/14772019.2014.902400 Forel, 2013, Biodiversity evolution through the Permian—Triassic Boundary Event: ostracods from the Bükk Mountains, Hungary, Acta Palaeontologica Polonica, 58, 195 Forel, 2013, In the aftermath of the end-Permian extinction: the microbialite refuge?, Terra Nova, 25, 137, 10.1111/ter.12017 Foster, 2014, Functional diversity of marine ecosystems after the Late Permian mass extinction event, Nature Geoscience, 7, 233, 10.1038/ngeo2079 Foster, 2015, Environmental controls on the post-Permian recovery of benthic, tropical marine ecosystems in western Palaeotethys (Aggtelek Karst, Hungary), Palaeogeography Palaeoclimatology Palaeoecology, 440, 374, 10.1016/j.palaeo.2015.09.004 Foster, 2018, Persistent environmental stress delayed the recovery of marine communities in the aftermath of the latest Permian mass extinction, Paleoceanography and Paleoclimatology, 33, 338, 10.1002/2018PA003328 Friesenbichler, 2018, Sponge-microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: microfacies and stable carbon isotopes, Palaeogeography Palaeoclimatology Palaeoecology, 490, 653, 10.1016/j.palaeo.2017.11.056 Gallagher, 2012, Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria, Geobiology, 10, 518, 10.1111/j.1472-4669.2012.00342.x Gelpi, 1970, Hydrocarbons of geochemical significance in microscopic algae, Phytochemistry, 9, 603, 10.1016/S0031-9422(00)85700-3 Godbold, 2017, Precarious ephemeral refugia during the earliest Triassic, Geology, 45, 607, 10.1130/G38793.1 Grant, 1861 Grice, 2005, Photic zone euxinia during the Permian-Triassic superanoxic event, Science, 307, 706, 10.1126/science.1104323 Haas, 2007, Biotic and environmental changes in the Permian–Triassic boundary interval recorded on a western Tethyan ramp in the Bükk Mountains, Hungary, Global and Planetary Change, 55, 136, 10.1016/j.gloplacha.2006.06.010 Hays, 2007, Evidence for photic zone euxinia through the end-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada), Palaeoworld, 16, 39, 10.1016/j.palwor.2007.05.008 Hefter, 1993, Biomarker indications for microbial contribution to Recent and Late Jurassic carbonate deposits, Facies, 29, 93, 10.1007/BF02536922 Heindel, 2010, Formation of deglacial microbialites in coral reefs off Tahiti (IODP 310) involving sulfate-reducing bacteria, PALAIOS, 25, 618, 10.2110/palo.2010.p10-032r Heindel, 2012, Post-glacial microbialite formation in coral reefs of the Pacific, Atlantic, and Indian Oceans, Chemical Geology, 304–305, 117, 10.1016/j.chemgeo.2012.02.009 Heindel, 2015, Biogeochemical formation of calyx-shaped carbonate crystal fans in the subsurface of the Early Triassic seafloor, Gondwana Research, 27, 840, 10.1016/j.gr.2013.11.004 Insalaco, 2006, Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biotratigraphy and stratigraphic architecture, GEOARABIA-MANAMA, 11, 75, 10.2113/geoarabia110275 Jahnke, 2008, Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in hypersaline microbial mat and underlying sediment, Geobiology, 6, 394, 10.1111/j.1472-4669.2008.00165.x Kaźmierczak, 2015, CaCO3 precipitation in multilayered cyanobacterial mats: clues to explain the alternation of micrite and sparite layers in calcareous stromatolites, Life, 5, 744, 10.3390/life5010744 Kenig, 1995, Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates, Geochimica et Cosmochimica Acta, 14, 2999, 10.1016/0016-7037(95)00190-5 Kershaw, 1999, A ?microbialite carbonate crust at the Permian–Triassic boundary in South China, and its palaeoenvironmental significance, Palaeogeography Palaeoclimatology Palaeoecology, 146, 1, 10.1016/S0031-0182(98)00139-4 Kershaw, 2011, Earliest Triassic microbialites in Çürük Dag, southern Turkey: composition, sequences and controls on formation, Sedimentology, 58, 739, 10.1111/j.1365-3091.2010.01181.x Kershaw, 2012, Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis, Geobiology, 10, 25, 10.1111/j.1472-4669.2011.00302.x Köster, 1999, Mono-, di- and trimethyl-branched alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum, Organic Geochemistry, 30, 1367, 10.1016/S0146-6380(99)00110-2 Lehrmann, 1999, Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, south China, Geology, 27, 359, 10.1130/0091-7613(1999)027<0359:ETCMAB>2.3.CO;2 Lehrmann, 2015, Environmental controls on the genesis of marine microbialites and dissolution surface associated with the end-Permian mass extinction: new sections and observations from the Nanpanjiang Basin, South China, PALAIOS, 30, 529, 10.2110/palo.2014.088 Luo, 2014, First report of fossil “keratose” demosponges in Phanerozoic carbonates: preservation and 3-D reconstruction, Naturwissenschaften, 101, 467, 10.1007/s00114-014-1176-0 Luo, 2016, ‘Stromatolites’ built by sponges and microbes - a new type of Phanerozoic bioconstruction, Lethaia, 49, 555, 10.1111/let.12166 Luo, 2013, Microbial-algal community changes during the latest Permian ecological crisis: evidence from lipid biomarkers at Cili, South China, Global and Planetary Change, 105, 36, 10.1016/j.gloplacha.2012.11.015 Marenco, 2012, Paleoecology and geochemistry of early Triassic (Spathian) microbial mounds and implications for anoxia following the end-permian mass extinction, Geology, 40, 715, 10.1130/G32936.1 Martindale, 2017, The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event, Palaeogeography Palaeoclimatology Palaeoecology Martinez-Alonso, 2005, Diversity of anoxygenic phototrophic sulfur bacteria in the microbial mats of the Ebro Delta: a combined morphological and molecular approach, FEMS Microbiology Ecology, 52, 339, 10.1016/j.femsec.2004.11.021 Mata, 2011, Origin of Lower Triassic microbialites in mixed carbonate-siliciclastic successions: ichnology, applied stratigraphy, and the end-Permian mass extinction, Palaeogeography Palaeoclimatology Palaeoecology, 300, 158, 10.1016/j.palaeo.2010.12.022 Mata, 2012, Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis, Geobiology, 10, 3, 10.1111/j.1472-4669.2011.00305.x McGhee, 2004, Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled, Palaeogeography Palaeoclimatology Palaeoecology, 211, 289, 10.1016/j.palaeo.2004.05.010 Meister, 2013, Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments, Geology, 41, 499, 10.1130/G34185.1 Nabbefeld, 2010, An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen, Earth and Planetary Science Letters, 291, 84, 10.1016/j.epsl.2009.12.053 Neunlist, 1985, Novel hopanes from the methylotrophic bacteria Methylococcus capsulatus and Methylomonas methanica. (22S)-35-aminobacteriohopane-30,31,32,33,34-pentol and (22S)-35-amino-3β-methylbacteriohopane-30,31,32,33,34-pentol, The Biochemical Journal, 231, 635, 10.1042/bj2310635 Orphan, 2008, Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California, Geobiology, 6, 376, 10.1111/j.1472-4669.2008.00166.x Ourisson, 1987, Prokaryotic hopanoids and other polyterpenoid sterol surrogates, Annual Review of Microbiology, 41, 301, 10.1146/annurev.mi.41.100187.001505 Pawlowska, 2013, Lipid taphonomy in the Proterozoic and the effect of microbail mats on biomarker preservation, Geology, 41, 103, 10.1130/G33525.1 Payne, 2006, The pattern and timing of biotic recovery from the End-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China, PALAIOS, 21, 63, 10.2110/palo.2005.p05-12p Pearson, 2007, Novel hopanoid cyclases from the environment, Environmental Microbiology, 9, 2175, 10.1111/j.1462-2920.2007.01331.x Peckmann, 2004, A microbial mat of a large sulfur bacterium preserved in a Miocene methane-seep limestone, Geomicrobiology Journal, 21, 247, 10.1080/01490450490438757 Peters, 1991, Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum, Organic Geochemistry, 17, 47, 10.1016/0146-6380(91)90039-M Peters, 2005 Pruss, 2004, Proliferation of Early Triassic wrinkle structures: implications for environmental stress following the end-Permian mass extinction, Geology, 32, 461, 10.1130/G20354.1 Pruss, 2006, A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States, Earth-Science Reviews, 78, 193, 10.1016/j.earscirev.2006.05.002 Pruss, 2007, Placunopsis bioherms: the first metazoan buildups following the End-Permian mass extinction, PALAIOS, 22, 17, 10.2110/palo.2005.p05-050r R Core Team, 2016 Rashby, 2007, Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph, Proceedings of the National Academy of Sciences of the United States of America, 104, 15099, 10.1073/pnas.0704912104 Reid, 2000, The role of microbes in accretion, lamination and early lithification of modern marine stromatolites, Nature, 406, 989, 10.1038/35023158 Reitner, 2005, Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea), Facies, 51, 66, 10.1007/s10347-005-0059-4 Richoz, 2006, Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de quelques localités de la Néotéthys (Turquie, Oman et Iran), Mémoires de géologie, Lausanne, 46, 284 Riding, 2005, Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic, Palaeogeography Palaeoclimatology Palaeoecology, 219, 101, 10.1016/j.palaeo.2004.11.018 Rishworth, 2016, Coexisting living stromatolites and infaunal metazoans, Oecologia, 182, 539, 10.1007/s00442-016-3683-5 Rommerskirchen, 2006, Glacial/interglacial changes in southern Africa: compound-specific δ13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments. Geochemistry, Geophys, Geosystems, 7, Q08010 Rowland, 1990, Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria, Organic Geochemistry, 15, 9, 10.1016/0146-6380(90)90181-X Saito, 2015, Predominance of archaea-derived hydrocarbons in an Early Triassic microbialite, Organic Geochemistry, 85, 66, 10.1016/j.orggeochem.2015.05.004 Schinteie, 2017, Paleoecology of Neoproterozoic hypersaline environments: biomarker evidence for haloarchaea, methanogens, and cyanobacteria, Geobiology, 15, 641, 10.1111/gbi.12245 Schubert, 1992, Early Triassic stromatolites as post-mass extinction disaster forms, Geology, 20, 883, 10.1130/0091-7613(1992)020<0883:ETSAPM>2.3.CO;2 Shiea, 1991, Comparative analysis of extractable lipids in hot spring microbial mats and their component photosynthetic bacteria, Organic Geochemistry, 17, 309, 10.1016/0146-6380(91)90094-Z Simoneit, 1978, The organic chemistry of marine sediments, 233 Stampfli, 2001, A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones, Earth and Planetary Science Letters, 196, 17, 10.1016/S0012-821X(01)00588-X Stanley, 2016, Estimates of the magnitudes of major marine mass extinctions in earth history, Proceedings of the National Academy of Sciences, 42, E6325, 10.1073/pnas.1613094113 Summons, 1990, Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments, American Journal of Science, 290, 212 Summons, 1988, Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona, Geochimica et Cosmochimica Acta, 52, 2625, 10.1016/0016-7037(88)90031-2 Summons, 1988, Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons, Geochimica et Cosmochimica Acta, 52, 1747, 10.1016/0016-7037(88)90001-4 Talbot, 2007, Bacterial populations recorded in diverse sedimentary biohopanoid distributions, Organic Geochemistry, 38, 1212, 10.1016/j.orggeochem.2007.04.006 Talbot, 2008, Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings, Organic Geochemistry, 39, 232, 10.1016/j.orggeochem.2007.08.006 Tang, 2017, Permian-Triassic boundary microbialites (PTBMs) in southwest China: implications for paleoenvironment reconstruction, Facies, 63, 10.1007/s10347-016-0482-8 Tarhan, 2013, Microbial mat controls on infaunal abundance and diversity in modern marine microbialites, Geobiology, 11, 485, 10.1111/gbi.12049 Teixidor, 1993, Isopranylglycerol diethers in non-alkaline evaporitic environments, Geochimica et Cosmochimica Acta, 57, 4479, 10.1016/0016-7037(93)90497-K Thiel, 2001, Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat, Marine Chemistry, 73, 97, 10.1016/S0304-4203(00)00099-2 Tian, 2014, Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China, Palaeogeography Palaeoclimatology Palaeoecology, 412, 68, 10.1016/j.palaeo.2014.07.018 Vasconcelos, 2006, Lithifying microbial mats in Lagoa Vermelha, Brazil: modern precambrian relics?, Sediment. Geol., 185, 175, 10.1016/j.sedgeo.2005.12.022 Visscher, 2000, Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites, Geology, 28, 919, 10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO;2 Warden, 2016, Characterization of microbial mat microbiomes in the modern thrombolite ecosystem of lake Clifton, Western Australia using shotgun metagenomics, Frontiers in Microbiology, 7, 10.3389/fmicb.2016.01064 Wing, 2003, Causes and consequences of globally warm climates in the early Paleogene, vol. 369 Wu, 2014, Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance, Scientific Reports, 4 Xie, 2005, Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction, Nature, 434, 494, 10.1038/nature03396 Xie, 2010, Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis, Geology, 38, 447, 10.1130/G30769.1 Yang, 2011, Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China, Palaeogeography Palaeoclimatology Palaeoecology, 308, 111, 10.1016/j.palaeo.2010.05.029 Yang, 2015, Palaeoecology of microconchids from microbialites near the Permian-Triassic boundary in South China, Lethaia, 48, 497, 10.1111/let.12122 Zatoń, 2018, Earliest Triassic metazoan bioconstructions in East Greenland reveal a pioneering benthic community from immediately after the end-Permian mass extinction, Global Planet. Change, 167, 87, 10.1016/j.gloplacha.2018.05.009