The formation and expansion of the eastern Proto-Tibetan Plateau: Insights from low-temperature thermochronology
Tài liệu tham khảo
Ansberque, 2018, Differential exhumation across the Longriba fault system: implications for the eastern Tibetan plateau, Tectonics, 37, 663, 10.1002/2017TC004816
Bai, 2010, Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging, Nat. Geosci., 3, 358, 10.1038/ngeo830
Brandon, 1998, Late cenozoic exhumation of the Cascadia accretionary wedge in the Olympic mountains, northwest Washington state, Geol. Soc. Am. Bull., 110, 985, 10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2
Chung, 2009, The nature and timing of crustal thickening in southern Tibet: geochemical and zircon Hf isotopic constraints from postcollisional adakites, Tectonophysics, 477, 36, 10.1016/j.tecto.2009.08.008
Chung, 2005, Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism, Earth-Sci. Rev., 68, 173, 10.1016/j.earscirev.2004.05.001
Chung, 1998, Diachronous uplift of the Tibetan plateau starting 40 Myr ago, Nature, 394, 769, 10.1038/29511
Clark, 2005, Late cenozoic uplift of southeastern Tibet, Geology, 33, 525, 10.1130/G21265.1
Clark, 2000, Topographic ooze: building the eastern margin of Tibet by lower crustal flow, Geology, 28, 703, 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
Cook, 2013, Constraints on cenozoic tectonics in the southwestern Longmen Shan from low-temperature thermochronology, Lithosphere, 5, 393, 10.1130/L263.1
Dai, 2013, Insights into the early Tibetan plateau from (U–Th)/He thermochronology, J. Geol. Soc., 170, 917, 10.1144/jgs2012-076
Dai, 2013, Multi-stage tectono-magmatic events of the Eastern Kunlun range, northern Tibet: insights from U-Pb geochronology and (U–Th)/He thermochronology, Tectonophysics, 599, 97, 10.1016/j.tecto.2013.04.005
Deng, 2018, Tectonic uplift of the Xichang basin (Se Tibetan plateau) revealed by structural geology and thermochronology data, Basin Res., 30, 75, 10.1111/bre.12243
Deng, 2019, Review: implications of vertebrate fossils for paleo-elevations of the Tibetan plateau, Glob. Planet. Change, 174, 58, 10.1016/j.gloplacha.2019.01.005
Ding, 2017, Quantifying the rise of the Himalaya Orogen and implications for the South Asian monsoon, Geology, 45, 215, 10.1130/G38583.1
Ding, 2014, The Andean-type Gangdese mountains: paleoelevation record from the paleocene-eocene Linzhou basin, Earth Planet. Sci. Lett., 392, 250, 10.1016/j.epsl.2014.01.045
Ding, 2003, Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction, J. Petrol., 44, 1833, 10.1093/petrology/egg061
Dodson, 1973, Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 40, 259, 10.1007/BF00373790
Dong, 2016, Extensional extrusion: insights into south-eastward expansion of Tibetan plateau from magnetotelluric array data, Earth Planet. Sci. Lett., 454, 78, 10.1016/j.epsl.2016.07.043
Dunkl, 2002, Trackkey: a windows program for calculation and graphical presentation of fission track data, Comput. Geosci., 28, 3, 10.1016/S0098-3004(01)00024-3
Garzione, 2000, High times on the Tibetan plateau: paleoelevation of the Thakkhola Graben, Nepal Geol., 28, 339, 10.1130/0091-7613(2000)28<339:HTOTTP>2.0.CO;2
Gleadow, 1981, A natural long-term track annealing experiment for apatite, Nucl. Tracks, 5, 169, 10.1016/0191-278X(81)90039-1
Gleadow, 1986, Fission track lengths in the apatite annealing zone and the interpretation of mixed ages, Earth Planet. Sci. Lett., 78, 245, 10.1016/0012-821X(86)90065-8
Gleadow, 1986, Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis, Contrib. Miner. Petrol., 94, 405, 10.1007/BF00376334
Godard, 2009, Late cenozoic evolution of the central Longmen Shan, eastern Tibet: insight from (U-Th)/He thermochronometry, Tectonics, 28, 5009, 10.1029/2008TC002407
Green, 2006, Interpretation of apatite (U–Th)/He ages and fission track ages from cratons, Earth Planet. Sci. Lett., 244, 541, 10.1016/j.epsl.2006.02.024
Guo, 2015, Post-collisional ultrapotassic mafic magmatism in south Tibet: products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab, J. Petrol., 56, 1365, 10.1093/petrology/egv040
Guynn, 2006, Tibetan basement rocks near Amdo reveal “missing” mesozoic tectonism along the Bangong Suture, central Tibet, Geology, 34, 505, 10.1130/G22453.1
Haider, 2013, Cretaceous to cenozoic evolution of the northern Lhasa Terrane and the early paleogene development of peneplains at Nam Co, Tibetan plateau, J. Asian Earth Sci., 70, 79, 10.1016/j.jseaes.2013.03.005
Hetzel, 2011, Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift, Geology, 39, 983, 10.1130/G32069.1
Hoke, 2018, Geochronology transforms our view of how Tibet’s southeast margin evolved, Geology, 46, 95, 10.1130/focus012018.1
Hoke, 2014, Stable isotopes reveal high southeast Tibetan plateau margin since the paleogene, Earth Planet. Sci. Lett., 394, 270, 10.1016/j.epsl.2014.03.007
Hu, 2015, Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle paleocene, 59±1 Ma), Geology, 43, 859, 10.1130/G36872.1
Hurford, 1990, Standardization of fission track dating calibration: recommendation by the fission track working group of the Iugs subcommission on geochronology, Chem. Geol.: Isot Geosci. Sect., 80, 171
Hurford, 1983, The zeta age calibration of fission-track dating, Chem. Geol., 41, 285, 10.1016/S0009-2541(83)80026-6
Jiang, 2019, Oligocene Koelreuteria (Sapindaceae) from the Lunpola basin in central Tibet and its implication for early diversification of the genus, J. Asian Earth Sci., 175, 99, 10.1016/j.jseaes.2018.01.014
Jolivet, 2015, Mesozoic-cenozoic evolution of the Danba Dome (Songpan Garzê, east Tibet) as inferred from La-Icpms U-Pb and fission-track data, J. Asian Earth Sci., 102, 180, 10.1016/j.jseaes.2015.02.009
Kapp, 2007, Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet, Geol. Soc. Am. Bull., 119, 917, 10.1130/B26033.1
Kapp, 2003, Mesozoic and cenozoic tectonic evolution of the Shiquanhe area of western Tibet, Tectonics, 22, 1043, 10.1029/2001TC001332
Kapp, 2005, Cretaceous-tertiary shortening, basin development, and volcanism in central Tibet, Geol. Soc. Am. Bull., 117, 865, 10.1130/B25595.1
Ketcham, 2005, Forward and inverse modeling of low-temperature thermochronometry data, Rev. Mineral. Geochem., 58, 275, 10.2138/rmg.2005.58.11
Ketcham, 2007, Improved modeling of fission-track annealing in apatite, Am. Miner., 92, 799, 10.2138/am.2007.2281
Kirby, 2002, Late cenozoic evolution of the eastern margin of the Tibetan plateau: inferences from 40ar/39ar and (U-Th)/He thermochronology, Tectonics, 21, 1, 10.1029/2000TC001246
Lai, 2007, Constraining the stepwise migration of the eastern Tibetan plateau margin by apatite fission track thermochronology, Sci. China Ser. D: Earth Sci., 50, 172, 10.1007/s11430-007-2048-7
Le Pape, 2015, Constraints on the evolution of crustal flow beneath Northern Tibet, Geochem. Geophys. Geosyst., 16, 4237, 10.1002/2015GC005828
Leng, 2018, Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating, Econ. Geol., 113, 1077, 10.5382/econgeo.2018.4582
Li, 2016, Synorogenic morphotectonic evolution of the Gangdese Batholith, south Tibet: insights from low-temperature thermochronology, Geochem. Geophys. Geosyst., 17, 101, 10.1002/2015GC006047
Li, 2013, Zircon U-Pb geochronology of the Konggar Granitoidand Migmatite: constraints on the oligo-miocene tectono-thermal evolution of the Xianshuihe fault zone, east Tibet, Tectonophysics, 606, 127, 10.1016/j.tecto.2013.07.007
Li, 2018, Paleomagnetic constraints from the Baoshan area on the deformation of the Qiangtang-Sibumasu terrane around the eastern Himalayan syntaxis, J. Geophys. Res.-Solid Earth, 123, 977, 10.1002/2017JB015112
Li, 2015, Cenozoic paleoaltimetry of the Se margin of the Tibetan plateau: constraints on the tectonic evolution of the region, Earth Planet. Sci. Lett., 432, 415, 10.1016/j.epsl.2015.09.044
Li, 2015, Propagation of the deformation and growth of the Tibetan-Himalayan Orogen: a review, Earth-Sci. Rev., 143, 36, 10.1016/j.earscirev.2015.01.001
Liu-Zeng, 2018, Multiple episodes of fast exhumation since cretaceous in southeast Tibet, revealed by low-temperature thermochronology, Earth Planet. Sci. Lett., 490, 62, 10.1016/j.epsl.2018.03.011
Lu, 2015, Fission track thermochronology evidence for the cretaceous and paleogene tectonic event of nyainrong microcontinent, Tibet. Acta Geol Sin.-Engl. Ed., 89, 133, 10.1111/1755-6724.12400
Mo, 2006, Petrology and geochemistry of postcollisional volcanic rocks from the tibetan plateau: implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow, 507
Molnar, 2010, Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan plateau, Annu. Rev. Earth Planet. Sci., 38, 77, 10.1146/annurev-earth-040809-152456
Molnar, 1993, Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon, Rev. Geophys., 31, 357, 10.1029/93RG02030
Murphy, 2009, Late miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history, Earth Planet. Sci. Lett., 282, 1, 10.1016/j.epsl.2009.01.006
Murphy, 1997, Did the Indo-Asian collision alone create the Tibetan plateau?, Geology, 25, 719, 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
Nie, 2018, Rapid incision of the Mekong river in the middle miocene linked to monsoonal precipitation, Nat. Geosci., 11, 944, 10.1038/s41561-018-0244-z
Ou, 2017, Eocene adakitic porphyries in the central-northern Qiangtang block, central Tibet: partial melting of thickened lower crust and implications for initial surface uplifting of the plateau, J. Geophys. Res.-Solid Earth, 122, 1025, 10.1002/2016JB013259
Ouimet, 2010, Regional incision of the eastern margin of the Tibetan plateau, Lithosphere, 2, 50, 10.1130/L57.1
Reid, 2005, Mesozoic cooling across the Yidun Arc, Central-Eastern Tibetan plateau: a reconnaissance 40ar/39ar study, Tectonophysics, 398, 45, 10.1016/j.tecto.2005.01.002
Reiners, 2004, Zircon (U-Th)/He thermochronometry: he diffusion and comparisons with 40ar/39ar Dating, Geochim. Cosmochim. Acta, 68, 1857, 10.1016/j.gca.2003.10.021
Roger, 2008, Tectonic evolution of the Triassic fold belts of Tibet, C. R. Geosci., 340, 180, 10.1016/j.crte.2007.10.014
Roger, 2010, The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from proterozoic to present: a synthesis, J. Asian Earth Sci., 39, 254, 10.1016/j.jseaes.2010.03.008
Rohrmann, 2012, Thermochronologic evidence for plateau formation in central Tibet by 45 Ma, Geology, 40, 187, 10.1130/G32530.1
Rowley, 2006, Palaeo-altimetry of the late eocene to miocene Lunpola basin, central Tibet, Nature, 439, 677, 10.1038/nature04506
Rowley, 2007, Stable isotope-based paleoaltimetry, Annu. Rev. Earth Planet. Sci., 35, 463, 10.1146/annurev.earth.35.031306.140155
Saylor, 2009, The late miocene through present paleoelevation history of southwestern Tibet, Am. J. Sci., 309, 1, 10.2475/01.2009.01
Spurlin, 2005, Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet, Geol. Soc. Am. Bull., 117, 1293, 10.1130/B25572.1
Su, 2018, Uplift, climate and biotic changes at the eocene-oligocene transition in southeast Tibet, Natl. Sci. Rev., 6, 495, 10.1093/nsr/nwy062
Su, 2019, No high Tibetan plateau until the neogene, Sci. Adv., 5, 2189, 10.1126/sciadv.aav2189
Sun, 2014, Palynological evidence for the latest Oligocene−early miocene paleoelevation estimate in the Lunpola basin, central Tibet, Paleogeogr. Paleoclimatol. Paleoecol., 399, 21, 10.1016/j.palaeo.2014.02.004
Sun, 2018, Role of pre-existing structures in controlling the cenozoic tectonic evolution of the eastern Tibetan plateau: new insights from analogue experiments, Earth Planet. Sci. Lett., 491, 207, 10.1016/j.epsl.2018.03.005
Tan, 2014, Exhumation historyand faulting activity of the southern segment of the Longmen Shan, eastern Tibet, J. Asian Earth Sci., 81, 91, 10.1016/j.jseaes.2013.12.002
Tan, 2017, Cenozoic exhumation of the Danba Antiform, eastern Tibet: evidence from low-temperature thermochronology, Lithosphere, 9, 534
Tan, 2019, Parallelism between the maximum exhumation belt and the moho ramp along the eastern Tibetan plateau margin: coincidence or consequence?, Earth Planet Sci. Lett., 507, 73, 10.1016/j.epsl.2018.12.001
Tan, 2017, Late cenozoic thrusting of major faults along the central segment of Longmen Shan, eastern Tibet: evidence from low-temperature thermochronology, Tectonophysics, 712, 145, 10.1016/j.tecto.2017.05.016
Tang, 2017, Paleoelevation reconstruction of the paleocene-eocene Gonjo Basin, Se-Central Tibet, Tectonophysics, 712, 170, 10.1016/j.tecto.2017.05.018
Tang, 2018, Mesozoic-cenozoic evolution of the zoige depression in the Songpan-Ganzi Flysch basin, eastern Tibetan plateau: constraints from detrital zircon U-Pb ages and fission-track ages of the triassic sedimentary sequence, J. Asian Earth Sci., 151, 285, 10.1016/j.jseaes.2017.10.021
Tapponnier, 1982, Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine, Geology, 10, 611, 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Tapponnier, 2001, Oblique stepwise rise and growth of the Tibet plateau, Science, 294, 1671, 10.1126/science.105978
Tian, 2013, Constructing the Longmen Shan eastern Tibetan plateau margin: insights from low-temperature thermochronology, Tectonics, 32, 576, 10.1002/tect.20043
Tian, 2014, A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan plateau, J. Geophys. Res.-Solid Earth, 119, 676, 10.1002/2013JB010429
Tian, 2014, Postorogenic rigid behavior of the eastern Songpan-Ganze terrane: insights from low-temperature thermochronology and implications for intracontinental deformation in Central Asia, Geochem. Geophys. Geosyst., 15, 453, 10.1002/2013GC004951
Tian, 2015, Synchronous fluvial response to surface uplift in the eastern Tibetan plateau: implications for crustal dynamics, Geophys. Res. Lett., 42, 29, 10.1002/2014GL062383
Turner, 1996, Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts, J. Petrol., 37, 45, 10.1093/petrology/37.1.45
Van Der Beek, 2009, Eocene Tibetan plateau remnants preserved in the northwest Himalaya, Nat. Geosci., 2, 364, 10.1038/ngeo503
Vermeesch, 2014, Thermal history modeling: hefty Vs. Qtqt, Earth-Sci. Rev., 139, 279, 10.1016/j.earscirev.2014.09.010
Wang, 2014, Outward-growth of the Tibetan plateau during the cenozoic: a review, Tectonophysics, 621, 1, 10.1016/j.tecto.2014.01.036
Wang, 2008, Constraints on the early uplift history of the Tibetan plateau, Natl. Acad. Sci. USA, 105, 4987, 10.1073/pnas.0703595105
Wang, 2007, Crustal structure beneath the eastern margin of the Tibetan plateau and its tectonic implications, J. Geophys. Res.-Solid Earth, 112
Wang, 2012, Two-phase growth of high topography in eastern Tibet during the cenozoic, Nat. Geosci., 5, 640, 10.1038/ngeo1538
Wang, 2013, Apatite fission track thermochronology evidence for the mid-cretaceous tectonic event in the Qiangtang basin, Tibet, Acta Petrol. Sin., 29, 1039
Wang, 2010, Eocene north-south trending dikes in central tibet: new constraints on the timing of east-west extension with implications for early plateau uplift?, Earth planet Sci. Lett., 298, 205, 10.1016/j.epsl.2010.07.046
Wang, 2008, Eocene Melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-k calc-alkaline andesites, dacites and rhyolites, Earth Planet. Sci. Lett., 272, 158, 10.1016/j.epsl.2008.04.034
Wang, 2012, The Jinhe-Qinghe fault—an inactive branch of the Xianshuihe-Xiaojiang fault zone, eastern Tibet, Tectonophysics, 544, 93
Williams, 2004, Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling, J. Petrol., 45, 555, 10.1093/petrology/egg094
Wilson, 2011, Denudational response to surface uplift in east Tibet: evidence from apatite fission-track thermochronology, Geol. Soc. Am. Bull., 123, 1966, 10.1130/B30331.1
Wu, 2017, Fossil climbing perchand associated plant megafossils indicate a warm and wet central Tibet during the late oligocene, Sci. Rep., 7, 878, 10.1038/s41598-017-00928-9
Xu, 2000, Tectonics and denudation adjacent to the xianshuihe fault, eastern Tibetan plateau: constraints from fission track thermochronology, J. Geophys. Res.-Solid Earth, 105, 19231, 10.1029/2000JB900159
Xu, 2018, Stable isotopes reveal southward growth of the Himalayan-Tibetan plateau since the paleocene, Gondwana Res., 54, 50, 10.1016/j.gr.2017.10.005
Xu, 2013, Paleogene high elevations in the Qiangtang terrane, central Tibetan plateau, Earth Planet. Sci. Lett., 362, 31, 10.1016/j.epsl.2012.11.058
Xu, 2016, Miocene high-elevation landscape of the eastern Tibetan plateau, Geochem. Geophys. Geosyst., 17, 4254, 10.1002/2016GC006437
Yang, 2015, In situ low-relief landscape formation as a result of river network disruption, Nature, 520, 526, 10.1038/nature14354
Yin, 2000, Geologic evolution of the Himalayan-Tibetan Orogen, Annu. Rev. Earth Planet. Sci., 28, 211, 10.1146/annurev.earth.28.1.211
Zhang, 2016, Pulsed exhumation of interior eastern Tibet: implications for relief generation mechanisms and the origin of high-elevation planation surfaces, Earth Planet. Sci. Lett., 449, 176, 10.1016/j.epsl.2016.05.048
Zhang, 2017, Vertical crustal motions across eastern Tibet revealed by topography-dependent seismic tomography, Sci Rep, 7, 3243, 10.1038/s41598-017-03578-z
Zhang, 2018, 53–43 Ma deformation of the eastern Tibet revealed by three stages of tectonic rotation in the Gongjue Basin, J. Geophys. Res.-Solid Earth., 123, 3320, 10.1002/2018JB015443
Zhang, 2017, Cooling history of the Gongga Batholith: implications for the xianshuihe fault and miocene kinematics of Se Tibet, Earth Planet. Sci. Lett., 465, 1, 10.1016/j.epsl.2017.02.025
Zhang, 2015, Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in southeast Tibet, Tectonics, 34, 1219, 10.1002/2014TC003671
Zhao, 2012, Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data, Geology, 40, 1139, 10.1130/G33703.1
Zhao, 2017, Early cretaceous exhumation of the Qiangtang terrane during collision with the Lhasa terrane, Central Tibet. Terr. Nova, 29, 382, 10.1111/ter.12298
Zhao, 2009, Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in Sw Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet, Lithos, 113, 190, 10.1016/j.lithos.2009.02.004
Zhu, 2017, Raising the gangdese mountains in southern Tibet, J. Geophys. Res.-Solid Earth, 122, 214, 10.1002/2016JB013508
Zhu, 2015, Magmatic record of India-Asia collision, Sci. Rep., 5, 14289, 10.1038/srep14289
Zhu, 2011, Lhasa terrane in southern Tibet came from Australia, Geology, 39, 727, 10.1130/G31895.1
Zhu, 2011, The lhasa terrane: record of a microcontinent and its histories of drift and growth, Earth Planet. Sci. Lett., 301, 241, 10.1016/j.epsl.2010.11.005
Zhuang, 2018, Understanding the geologic evolution of northern Tibetan plateau with multiple thermochronometers, Gondwana Res., 58, 195, 10.1016/j.gr.2018.02.014