The formation and expansion of the eastern Proto-Tibetan Plateau: Insights from low-temperature thermochronology

Journal of Asian Earth Sciences - Tập 183 - Trang 103975 - 2019
Han-Ao Li1, Jin-Gen Dai1, Shi-Ying Xu1, Bo-Rong Liu1, Xu Han1, Ya-Nan Wang1, Cheng-Shan Wang1,2
1School of Earth Science and Resources, and Research Center for Tibetan Plateau Geology, China University of Geosciences, Beijing 100083, China
2State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China

Tài liệu tham khảo

Ansberque, 2018, Differential exhumation across the Longriba fault system: implications for the eastern Tibetan plateau, Tectonics, 37, 663, 10.1002/2017TC004816 Bai, 2010, Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging, Nat. Geosci., 3, 358, 10.1038/ngeo830 Brandon, 1998, Late cenozoic exhumation of the Cascadia accretionary wedge in the Olympic mountains, northwest Washington state, Geol. Soc. Am. Bull., 110, 985, 10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2 Chung, 2009, The nature and timing of crustal thickening in southern Tibet: geochemical and zircon Hf isotopic constraints from postcollisional adakites, Tectonophysics, 477, 36, 10.1016/j.tecto.2009.08.008 Chung, 2005, Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism, Earth-Sci. Rev., 68, 173, 10.1016/j.earscirev.2004.05.001 Chung, 1998, Diachronous uplift of the Tibetan plateau starting 40 Myr ago, Nature, 394, 769, 10.1038/29511 Clark, 2005, Late cenozoic uplift of southeastern Tibet, Geology, 33, 525, 10.1130/G21265.1 Clark, 2000, Topographic ooze: building the eastern margin of Tibet by lower crustal flow, Geology, 28, 703, 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2 Cook, 2013, Constraints on cenozoic tectonics in the southwestern Longmen Shan from low-temperature thermochronology, Lithosphere, 5, 393, 10.1130/L263.1 Dai, 2013, Insights into the early Tibetan plateau from (U–Th)/He thermochronology, J. Geol. Soc., 170, 917, 10.1144/jgs2012-076 Dai, 2013, Multi-stage tectono-magmatic events of the Eastern Kunlun range, northern Tibet: insights from U-Pb geochronology and (U–Th)/He thermochronology, Tectonophysics, 599, 97, 10.1016/j.tecto.2013.04.005 Deng, 2018, Tectonic uplift of the Xichang basin (Se Tibetan plateau) revealed by structural geology and thermochronology data, Basin Res., 30, 75, 10.1111/bre.12243 Deng, 2019, Review: implications of vertebrate fossils for paleo-elevations of the Tibetan plateau, Glob. Planet. Change, 174, 58, 10.1016/j.gloplacha.2019.01.005 Ding, 2017, Quantifying the rise of the Himalaya Orogen and implications for the South Asian monsoon, Geology, 45, 215, 10.1130/G38583.1 Ding, 2014, The Andean-type Gangdese mountains: paleoelevation record from the paleocene-eocene Linzhou basin, Earth Planet. Sci. Lett., 392, 250, 10.1016/j.epsl.2014.01.045 Ding, 2003, Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction, J. Petrol., 44, 1833, 10.1093/petrology/egg061 Dodson, 1973, Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 40, 259, 10.1007/BF00373790 Dong, 2016, Extensional extrusion: insights into south-eastward expansion of Tibetan plateau from magnetotelluric array data, Earth Planet. Sci. Lett., 454, 78, 10.1016/j.epsl.2016.07.043 Dunkl, 2002, Trackkey: a windows program for calculation and graphical presentation of fission track data, Comput. Geosci., 28, 3, 10.1016/S0098-3004(01)00024-3 Garzione, 2000, High times on the Tibetan plateau: paleoelevation of the Thakkhola Graben, Nepal Geol., 28, 339, 10.1130/0091-7613(2000)28<339:HTOTTP>2.0.CO;2 Gleadow, 1981, A natural long-term track annealing experiment for apatite, Nucl. Tracks, 5, 169, 10.1016/0191-278X(81)90039-1 Gleadow, 1986, Fission track lengths in the apatite annealing zone and the interpretation of mixed ages, Earth Planet. Sci. Lett., 78, 245, 10.1016/0012-821X(86)90065-8 Gleadow, 1986, Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis, Contrib. Miner. Petrol., 94, 405, 10.1007/BF00376334 Godard, 2009, Late cenozoic evolution of the central Longmen Shan, eastern Tibet: insight from (U-Th)/He thermochronometry, Tectonics, 28, 5009, 10.1029/2008TC002407 Green, 2006, Interpretation of apatite (U–Th)/He ages and fission track ages from cratons, Earth Planet. Sci. Lett., 244, 541, 10.1016/j.epsl.2006.02.024 Guo, 2015, Post-collisional ultrapotassic mafic magmatism in south Tibet: products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab, J. Petrol., 56, 1365, 10.1093/petrology/egv040 Guynn, 2006, Tibetan basement rocks near Amdo reveal “missing” mesozoic tectonism along the Bangong Suture, central Tibet, Geology, 34, 505, 10.1130/G22453.1 Haider, 2013, Cretaceous to cenozoic evolution of the northern Lhasa Terrane and the early paleogene development of peneplains at Nam Co, Tibetan plateau, J. Asian Earth Sci., 70, 79, 10.1016/j.jseaes.2013.03.005 Hetzel, 2011, Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift, Geology, 39, 983, 10.1130/G32069.1 Hoke, 2018, Geochronology transforms our view of how Tibet’s southeast margin evolved, Geology, 46, 95, 10.1130/focus012018.1 Hoke, 2014, Stable isotopes reveal high southeast Tibetan plateau margin since the paleogene, Earth Planet. Sci. Lett., 394, 270, 10.1016/j.epsl.2014.03.007 Hu, 2015, Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle paleocene, 59±1 Ma), Geology, 43, 859, 10.1130/G36872.1 Hurford, 1990, Standardization of fission track dating calibration: recommendation by the fission track working group of the Iugs subcommission on geochronology, Chem. Geol.: Isot Geosci. Sect., 80, 171 Hurford, 1983, The zeta age calibration of fission-track dating, Chem. Geol., 41, 285, 10.1016/S0009-2541(83)80026-6 Jiang, 2019, Oligocene Koelreuteria (Sapindaceae) from the Lunpola basin in central Tibet and its implication for early diversification of the genus, J. Asian Earth Sci., 175, 99, 10.1016/j.jseaes.2018.01.014 Jolivet, 2015, Mesozoic-cenozoic evolution of the Danba Dome (Songpan Garzê, east Tibet) as inferred from La-Icpms U-Pb and fission-track data, J. Asian Earth Sci., 102, 180, 10.1016/j.jseaes.2015.02.009 Kapp, 2007, Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet, Geol. Soc. Am. Bull., 119, 917, 10.1130/B26033.1 Kapp, 2003, Mesozoic and cenozoic tectonic evolution of the Shiquanhe area of western Tibet, Tectonics, 22, 1043, 10.1029/2001TC001332 Kapp, 2005, Cretaceous-tertiary shortening, basin development, and volcanism in central Tibet, Geol. Soc. Am. Bull., 117, 865, 10.1130/B25595.1 Ketcham, 2005, Forward and inverse modeling of low-temperature thermochronometry data, Rev. Mineral. Geochem., 58, 275, 10.2138/rmg.2005.58.11 Ketcham, 2007, Improved modeling of fission-track annealing in apatite, Am. Miner., 92, 799, 10.2138/am.2007.2281 Kirby, 2002, Late cenozoic evolution of the eastern margin of the Tibetan plateau: inferences from 40ar/39ar and (U-Th)/He thermochronology, Tectonics, 21, 1, 10.1029/2000TC001246 Lai, 2007, Constraining the stepwise migration of the eastern Tibetan plateau margin by apatite fission track thermochronology, Sci. China Ser. D: Earth Sci., 50, 172, 10.1007/s11430-007-2048-7 Le Pape, 2015, Constraints on the evolution of crustal flow beneath Northern Tibet, Geochem. Geophys. Geosyst., 16, 4237, 10.1002/2015GC005828 Leng, 2018, Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating, Econ. Geol., 113, 1077, 10.5382/econgeo.2018.4582 Li, 2016, Synorogenic morphotectonic evolution of the Gangdese Batholith, south Tibet: insights from low-temperature thermochronology, Geochem. Geophys. Geosyst., 17, 101, 10.1002/2015GC006047 Li, 2013, Zircon U-Pb geochronology of the Konggar Granitoidand Migmatite: constraints on the oligo-miocene tectono-thermal evolution of the Xianshuihe fault zone, east Tibet, Tectonophysics, 606, 127, 10.1016/j.tecto.2013.07.007 Li, 2018, Paleomagnetic constraints from the Baoshan area on the deformation of the Qiangtang-Sibumasu terrane around the eastern Himalayan syntaxis, J. Geophys. Res.-Solid Earth, 123, 977, 10.1002/2017JB015112 Li, 2015, Cenozoic paleoaltimetry of the Se margin of the Tibetan plateau: constraints on the tectonic evolution of the region, Earth Planet. Sci. Lett., 432, 415, 10.1016/j.epsl.2015.09.044 Li, 2015, Propagation of the deformation and growth of the Tibetan-Himalayan Orogen: a review, Earth-Sci. Rev., 143, 36, 10.1016/j.earscirev.2015.01.001 Liu-Zeng, 2018, Multiple episodes of fast exhumation since cretaceous in southeast Tibet, revealed by low-temperature thermochronology, Earth Planet. Sci. Lett., 490, 62, 10.1016/j.epsl.2018.03.011 Lu, 2015, Fission track thermochronology evidence for the cretaceous and paleogene tectonic event of nyainrong microcontinent, Tibet. Acta Geol Sin.-Engl. Ed., 89, 133, 10.1111/1755-6724.12400 Mo, 2006, Petrology and geochemistry of postcollisional volcanic rocks from the tibetan plateau: implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow, 507 Molnar, 2010, Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan plateau, Annu. Rev. Earth Planet. Sci., 38, 77, 10.1146/annurev-earth-040809-152456 Molnar, 1993, Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon, Rev. Geophys., 31, 357, 10.1029/93RG02030 Murphy, 2009, Late miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history, Earth Planet. Sci. Lett., 282, 1, 10.1016/j.epsl.2009.01.006 Murphy, 1997, Did the Indo-Asian collision alone create the Tibetan plateau?, Geology, 25, 719, 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2 Nie, 2018, Rapid incision of the Mekong river in the middle miocene linked to monsoonal precipitation, Nat. Geosci., 11, 944, 10.1038/s41561-018-0244-z Ou, 2017, Eocene adakitic porphyries in the central-northern Qiangtang block, central Tibet: partial melting of thickened lower crust and implications for initial surface uplifting of the plateau, J. Geophys. Res.-Solid Earth, 122, 1025, 10.1002/2016JB013259 Ouimet, 2010, Regional incision of the eastern margin of the Tibetan plateau, Lithosphere, 2, 50, 10.1130/L57.1 Reid, 2005, Mesozoic cooling across the Yidun Arc, Central-Eastern Tibetan plateau: a reconnaissance 40ar/39ar study, Tectonophysics, 398, 45, 10.1016/j.tecto.2005.01.002 Reiners, 2004, Zircon (U-Th)/He thermochronometry: he diffusion and comparisons with 40ar/39ar Dating, Geochim. Cosmochim. Acta, 68, 1857, 10.1016/j.gca.2003.10.021 Roger, 2008, Tectonic evolution of the Triassic fold belts of Tibet, C. R. Geosci., 340, 180, 10.1016/j.crte.2007.10.014 Roger, 2010, The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from proterozoic to present: a synthesis, J. Asian Earth Sci., 39, 254, 10.1016/j.jseaes.2010.03.008 Rohrmann, 2012, Thermochronologic evidence for plateau formation in central Tibet by 45 Ma, Geology, 40, 187, 10.1130/G32530.1 Rowley, 2006, Palaeo-altimetry of the late eocene to miocene Lunpola basin, central Tibet, Nature, 439, 677, 10.1038/nature04506 Rowley, 2007, Stable isotope-based paleoaltimetry, Annu. Rev. Earth Planet. Sci., 35, 463, 10.1146/annurev.earth.35.031306.140155 Saylor, 2009, The late miocene through present paleoelevation history of southwestern Tibet, Am. J. Sci., 309, 1, 10.2475/01.2009.01 Spurlin, 2005, Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet, Geol. Soc. Am. Bull., 117, 1293, 10.1130/B25572.1 Su, 2018, Uplift, climate and biotic changes at the eocene-oligocene transition in southeast Tibet, Natl. Sci. Rev., 6, 495, 10.1093/nsr/nwy062 Su, 2019, No high Tibetan plateau until the neogene, Sci. Adv., 5, 2189, 10.1126/sciadv.aav2189 Sun, 2014, Palynological evidence for the latest Oligocene−early miocene paleoelevation estimate in the Lunpola basin, central Tibet, Paleogeogr. Paleoclimatol. Paleoecol., 399, 21, 10.1016/j.palaeo.2014.02.004 Sun, 2018, Role of pre-existing structures in controlling the cenozoic tectonic evolution of the eastern Tibetan plateau: new insights from analogue experiments, Earth Planet. Sci. Lett., 491, 207, 10.1016/j.epsl.2018.03.005 Tan, 2014, Exhumation historyand faulting activity of the southern segment of the Longmen Shan, eastern Tibet, J. Asian Earth Sci., 81, 91, 10.1016/j.jseaes.2013.12.002 Tan, 2017, Cenozoic exhumation of the Danba Antiform, eastern Tibet: evidence from low-temperature thermochronology, Lithosphere, 9, 534 Tan, 2019, Parallelism between the maximum exhumation belt and the moho ramp along the eastern Tibetan plateau margin: coincidence or consequence?, Earth Planet Sci. Lett., 507, 73, 10.1016/j.epsl.2018.12.001 Tan, 2017, Late cenozoic thrusting of major faults along the central segment of Longmen Shan, eastern Tibet: evidence from low-temperature thermochronology, Tectonophysics, 712, 145, 10.1016/j.tecto.2017.05.016 Tang, 2017, Paleoelevation reconstruction of the paleocene-eocene Gonjo Basin, Se-Central Tibet, Tectonophysics, 712, 170, 10.1016/j.tecto.2017.05.018 Tang, 2018, Mesozoic-cenozoic evolution of the zoige depression in the Songpan-Ganzi Flysch basin, eastern Tibetan plateau: constraints from detrital zircon U-Pb ages and fission-track ages of the triassic sedimentary sequence, J. Asian Earth Sci., 151, 285, 10.1016/j.jseaes.2017.10.021 Tapponnier, 1982, Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine, Geology, 10, 611, 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 Tapponnier, 2001, Oblique stepwise rise and growth of the Tibet plateau, Science, 294, 1671, 10.1126/science.105978 Tian, 2013, Constructing the Longmen Shan eastern Tibetan plateau margin: insights from low-temperature thermochronology, Tectonics, 32, 576, 10.1002/tect.20043 Tian, 2014, A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan plateau, J. Geophys. Res.-Solid Earth, 119, 676, 10.1002/2013JB010429 Tian, 2014, Postorogenic rigid behavior of the eastern Songpan-Ganze terrane: insights from low-temperature thermochronology and implications for intracontinental deformation in Central Asia, Geochem. Geophys. Geosyst., 15, 453, 10.1002/2013GC004951 Tian, 2015, Synchronous fluvial response to surface uplift in the eastern Tibetan plateau: implications for crustal dynamics, Geophys. Res. Lett., 42, 29, 10.1002/2014GL062383 Turner, 1996, Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts, J. Petrol., 37, 45, 10.1093/petrology/37.1.45 Van Der Beek, 2009, Eocene Tibetan plateau remnants preserved in the northwest Himalaya, Nat. Geosci., 2, 364, 10.1038/ngeo503 Vermeesch, 2014, Thermal history modeling: hefty Vs. Qtqt, Earth-Sci. Rev., 139, 279, 10.1016/j.earscirev.2014.09.010 Wang, 2014, Outward-growth of the Tibetan plateau during the cenozoic: a review, Tectonophysics, 621, 1, 10.1016/j.tecto.2014.01.036 Wang, 2008, Constraints on the early uplift history of the Tibetan plateau, Natl. Acad. Sci. USA, 105, 4987, 10.1073/pnas.0703595105 Wang, 2007, Crustal structure beneath the eastern margin of the Tibetan plateau and its tectonic implications, J. Geophys. Res.-Solid Earth, 112 Wang, 2012, Two-phase growth of high topography in eastern Tibet during the cenozoic, Nat. Geosci., 5, 640, 10.1038/ngeo1538 Wang, 2013, Apatite fission track thermochronology evidence for the mid-cretaceous tectonic event in the Qiangtang basin, Tibet, Acta Petrol. Sin., 29, 1039 Wang, 2010, Eocene north-south trending dikes in central tibet: new constraints on the timing of east-west extension with implications for early plateau uplift?, Earth planet Sci. Lett., 298, 205, 10.1016/j.epsl.2010.07.046 Wang, 2008, Eocene Melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-k calc-alkaline andesites, dacites and rhyolites, Earth Planet. Sci. Lett., 272, 158, 10.1016/j.epsl.2008.04.034 Wang, 2012, The Jinhe-Qinghe fault—an inactive branch of the Xianshuihe-Xiaojiang fault zone, eastern Tibet, Tectonophysics, 544, 93 Williams, 2004, Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling, J. Petrol., 45, 555, 10.1093/petrology/egg094 Wilson, 2011, Denudational response to surface uplift in east Tibet: evidence from apatite fission-track thermochronology, Geol. Soc. Am. Bull., 123, 1966, 10.1130/B30331.1 Wu, 2017, Fossil climbing perchand associated plant megafossils indicate a warm and wet central Tibet during the late oligocene, Sci. Rep., 7, 878, 10.1038/s41598-017-00928-9 Xu, 2000, Tectonics and denudation adjacent to the xianshuihe fault, eastern Tibetan plateau: constraints from fission track thermochronology, J. Geophys. Res.-Solid Earth, 105, 19231, 10.1029/2000JB900159 Xu, 2018, Stable isotopes reveal southward growth of the Himalayan-Tibetan plateau since the paleocene, Gondwana Res., 54, 50, 10.1016/j.gr.2017.10.005 Xu, 2013, Paleogene high elevations in the Qiangtang terrane, central Tibetan plateau, Earth Planet. Sci. Lett., 362, 31, 10.1016/j.epsl.2012.11.058 Xu, 2016, Miocene high-elevation landscape of the eastern Tibetan plateau, Geochem. Geophys. Geosyst., 17, 4254, 10.1002/2016GC006437 Yang, 2015, In situ low-relief landscape formation as a result of river network disruption, Nature, 520, 526, 10.1038/nature14354 Yin, 2000, Geologic evolution of the Himalayan-Tibetan Orogen, Annu. Rev. Earth Planet. Sci., 28, 211, 10.1146/annurev.earth.28.1.211 Zhang, 2016, Pulsed exhumation of interior eastern Tibet: implications for relief generation mechanisms and the origin of high-elevation planation surfaces, Earth Planet. Sci. Lett., 449, 176, 10.1016/j.epsl.2016.05.048 Zhang, 2017, Vertical crustal motions across eastern Tibet revealed by topography-dependent seismic tomography, Sci Rep, 7, 3243, 10.1038/s41598-017-03578-z Zhang, 2018, 53–43 Ma deformation of the eastern Tibet revealed by three stages of tectonic rotation in the Gongjue Basin, J. Geophys. Res.-Solid Earth., 123, 3320, 10.1002/2018JB015443 Zhang, 2017, Cooling history of the Gongga Batholith: implications for the xianshuihe fault and miocene kinematics of Se Tibet, Earth Planet. Sci. Lett., 465, 1, 10.1016/j.epsl.2017.02.025 Zhang, 2015, Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in southeast Tibet, Tectonics, 34, 1219, 10.1002/2014TC003671 Zhao, 2012, Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data, Geology, 40, 1139, 10.1130/G33703.1 Zhao, 2017, Early cretaceous exhumation of the Qiangtang terrane during collision with the Lhasa terrane, Central Tibet. Terr. Nova, 29, 382, 10.1111/ter.12298 Zhao, 2009, Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in Sw Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet, Lithos, 113, 190, 10.1016/j.lithos.2009.02.004 Zhu, 2017, Raising the gangdese mountains in southern Tibet, J. Geophys. Res.-Solid Earth, 122, 214, 10.1002/2016JB013508 Zhu, 2015, Magmatic record of India-Asia collision, Sci. Rep., 5, 14289, 10.1038/srep14289 Zhu, 2011, Lhasa terrane in southern Tibet came from Australia, Geology, 39, 727, 10.1130/G31895.1 Zhu, 2011, The lhasa terrane: record of a microcontinent and its histories of drift and growth, Earth Planet. Sci. Lett., 301, 241, 10.1016/j.epsl.2010.11.005 Zhuang, 2018, Understanding the geologic evolution of northern Tibetan plateau with multiple thermochronometers, Gondwana Res., 58, 195, 10.1016/j.gr.2018.02.014