The first report of antifungal lipopeptide production by a Bacillus subtilis subsp. inaquosorum strain

Microbiological Research - Tập 216 - Trang 40-46 - 2018
Chinyere A. Knight1, Michael J. Bowman2, Lafayette Frederick1, Agnes Day3, Clarence Lee4, Christopher A. Dunlap5
1Department of Biology, Tuskegee University, United States
2United States Department of Agriculture Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, 1815 North University St, Peoria, Illinois, 61604, United States
3Department of Microbiology, Howard University College of Medicine, United States
4Department of Biology, Howard University, United States
5United States Department of Agriculture, Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, 1815 North University Street, Peoria, Illinois 61604, United States

Tài liệu tham khảo

Aleti, 2015, Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes, Comput. Struct. Biotechnol. J., 13, 192, 10.1016/j.csbj.2015.03.003 Barbe, 2009, From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later, Microbiology, 155, 1758, 10.1099/mic.0.027839-0 Barnett, 1972 Belda, 2013, An updated metabolic view of the Bacillus subtilis 168 genome, Microbiology, 159, 757, 10.1099/mic.0.064691-0 Brito, 2018, Genetic competence drives genome diversity in Bacillus subtilis, Genome Biol. Evol., 10, 108, 10.1093/gbe/evx270 Cao, 2010, Biopesticide controls of plant diseases: resources and products for organic farmers in Ohio, Fact Sheet Cheng, 2018, Characterization of a blend-biosurfactant of glycolipid and lipopeptide produced by Bacillus subtilis TU2 isolated from underground oil-extraction wastewater, J. Microb. Biotechnol., 3, 390 Chung, 2008, Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper, Appl. Microbiol. Biotechnol., 80, 115, 10.1007/s00253-008-1520-4 Dunlap, 2013, Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: a biocontrol antagonist of Fusarium Head Blight, Biol. Control, 64, 166, 10.1016/j.biocontrol.2012.11.002 Dunlap, 2015, Genomic analysis of Bacillus subtilis OH 131.1 and coculturing with Cryptococcus flavescens for control of fusarium head blight, Plant Gene, 2, 1, 10.1016/j.plgene.2015.03.002 Falardeau, 2013, Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens, J. Chem. Ecol., 39, 869, 10.1007/s10886-013-0319-7 Fan, 2017, Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease, Microbiol. Res., 199, 89, 10.1016/j.micres.2017.03.004 Fravel, 2005, Commercialization and implementation of biocontrol, Annu. Rev. Phytopathol., 43, 337, 10.1146/annurev.phyto.43.032904.092924 Hawlena, 2012, Bacteriocin-mediated interactions within and between coexisting species, Ecol. Evol., 2, 2516, 10.1002/ece3.354 Ilinskaya, 2017, Secretome of intestinal Bacilli: a natural guard against pathologies, Front. Microbiol., 8, 1666, 10.3389/fmicb.2017.01666 Ji, 2015, Improved production of sublancin via introduction of three characteristic promoters into operon clusters responsible for this novel distinct glycopeptide biosynthesis, Microb. Cell Fact., 14 Jolley, 2010, BIGSdb: scalable analysis of bacterial genome variation at the population level, BMC Bioinf., 11, 595, 10.1186/1471-2105-11-595 Kalinovskaya, 2002, Characterization of surfactin-like cyclic depsipeptides synthesized by Bacillus pumilus from ascidian Halocynthia aurantium, Mar. Biotechnol., 4, 179, 10.1007/s10126-001-0084-4 Knight, 2014, Black-pigmented strain of Bacillus with Antifungal and Bio-control capabilities Kobayashi, 2015, Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis, Environ. Microbiol., 17, 1365, 10.1111/1462-2920.12613 Konda, 1988, Aurantinin b, a new antimicrobial antibiotic from bacterial origin, J. Antibiot., 41, 268, 10.7164/antibiotics.41.268 Kumar, 2016, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054 Kunst, 1997, The complete genome sequence of the gram-positive bacterium Bacillus subtilis, Nature, 390, 249, 10.1038/36786 Lee, 2008, Purification and structural characterization of bacillomycin F produced by a bacterial honey isolate active against Byssochlamys fulva H25, J. Appl. Microbiol., 105, 663, 10.1111/j.1365-2672.2008.03797.x Leifert, 1995, Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45, J. Appl. Microbiol., 78, 97 Maget-Dana, 1994, Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties, Toxicology, 87, 151, 10.1016/0300-483X(94)90159-7 Michelin, 2002, A dark-pigmented strain of bacillus sp with antifungal and antibacterial properties Mnif, 2015, Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications, Pept. Sci., 104, 129, 10.1002/bip.22630 Nakamura, 1999, Note: relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. Subtilis subsp. Nov. And Bacillus subtilis subsp. Spizizenii subsp. Nov, Int. J. Syst. Evol. Microbiol., 49, 1211, 10.1099/00207713-49-3-1211 Nishikiori, 1978, Aurantinin, a new antibiotic of bacterial origin, J. Antibiot., 31, 525, 10.7164/antibiotics.31.525 Norris, 2016, The glycocins: in a class of their own, Curr. Opin. Struct. Biol., 40, 112, 10.1016/j.sbi.2016.09.003 Overbeek, 2014, The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST), Nucleic Acids Res., 42, D206, 10.1093/nar/gkt1226 Özcengiz, 2015, Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic, N. Biotechnol., 32, 612, 10.1016/j.nbt.2015.01.006 Pallazzini, 2016, Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation in wheat: genome sequencing and secondary metabolite cluster profiles, Microbiol. Res., 192, 30, 10.1016/j.micres.2016.06.002 Peypoux, 1985, Structure of bacillomycin F, a new peptidolipid antibiotic of the iturin group, Eur. J. Biochem., 153, 335, 10.1111/j.1432-1033.1985.tb09307.x Peypoux, 1999, Recent trends in the biochemistry of surfactin, Appl. Microbiol. Biotechnol., 51, 553, 10.1007/s002530051432 Riley, 2002, Bacteriocin diversity: ecological and evolutionary perspectives, Biochimie, 84, 357, 10.1016/S0300-9084(02)01421-9 Rooney, 2009, Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. Inaquosorum` subsp. Nov., Int. J. Syst. Evol. Microbiol., 59, 2429, 10.1099/ijs.0.009126-0 Ruiz-Sánchez, 2016, Antifungal activity and molecular identification of native strains of Bacillus subtilis, Agrociencia, 50, 133 Selvam, 2009, Effect of Bacillus subtilis PB6, a natural probiotic on colon mucosal inflammation and plasma cytokines levels in inflammatory bowel disease, Indian J. Biochem. Biophys., 46, 79 Stein, 2005, Bacillus subtilis antibiotics: structures, syntheses and specific functions, Mol. Microbiol., 56, 845, 10.1111/j.1365-2958.2005.04587.x Tamura, 1993, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 10, 512 Vanittanakom, 1986, Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3, J. Antibiot., 39, 888, 10.7164/antibiotics.39.888 Volpon, 2000, NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A2, FEBS Lett., 485, 76, 10.1016/S0014-5793(00)02182-7 Weber, 2015, antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters, Nucleic Acids Res., 43, W237, 10.1093/nar/gkv437 Wu, 2015, Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens, Sci. Rep., 5, 12975, 10.1038/srep12975 Yang, 2016, Genomics-inspired discovery of three antibacterial active metabolites, aurantinins B, C, and D from compost-associated Bacillus subtilis fmb60, J. Agric. Food Chem., 64, 8811, 10.1021/acs.jafc.6b04455 Yi, 2014, Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis, Syst. Appl. Microbiol., 37, 95, 10.1016/j.syapm.2013.09.006