The failure of amalgam dental restorations due to cyclic fatigue crack growth

D. Arola1, M. P. Huang1, M. B. Sultan1
1Department of Mechanical Engineering, University of Maryland – Baltimore County, Baltimore, USA

Tóm tắt

In this study a restored mandibular molar with different Class II amalgam preparations was examined to analyze the potential for restoration failure attributed to cyclic fatigue crack growth. A finite element analysis was used to determine the stress distribution along the cavo-surface margin which results from occlusal loading of each restoration. The cyclic crack growth rate of sub-surface flaws located along the dentinal cavo-surface margin were determined utilizing the Paris law. Based on similarities in material properties and lack of fatigue property data for dental biomaterials, the cyclic fatigue crack growth parameters for engineering ceramics were used to approximate the crack growth behavior. It was found that flaws located within the dentine along the buccal and lingual margins can significantly reduce the fatigue life of restored teeth. Sub-surface cracks as short as 25 μm were found capable of promoting tooth fracture well within 25 years from the time of restoration. Furthermore, cracks longer than 100 μm reduced the fatigue life to less than 5 years. Consequently, sub-surface cracks introduced during cavity preparation with conventional dental burrs may serve as a principal source for premature restoration failure. ©©1999©Kluwer Academic Publishers

Từ khóa


Tài liệu tham khảo

D. L. Moore and J. L. Stewart, J. Prosth. Dent. 17 (1967) 372.

J. Goldberg, J. Tanzer and E. Munster, J. Amer. Dent. Ass. 102 (1981) 635.

B. A. White, T. F. Albertini, L. J. Brown, D. Larachrobinson, M. Redford and R. H. Selwitz, J. Dent. Res. 75 (1996) 661.

R. L. Lambert, in “Amalgam restorations in advanced restorative dentistry,” edited by L. Baum (W. B. Saunders Co., Philadelphia, 1973).

W. A. Vale, Irish Dent. Rev. 2 (1956) 33.

G. J. Re and B. K. Norling, J. Dent. Res. 60 (1981) 805.

N. D. Ruse, PhD Dissertation, University of Toronto, 1988.

L. E. Tam and R. M. Pilliar, J. Dent. Res. 72 (1993) 953.

T. F. Watson, J. Dent. Res. 70 (1991) 44.

T. F. Watson, J. Microsc. 157 (1990) 51.

T. F. Watson, J. Dent. Res. 69 (1990) 1531.

T. F. Watson and A. Boyde, J. Dent. Res. 68 (1989) 577.

H. H. K. Xu, J. R. Kelly, S. Jahanmir, V. P. Thompson and E. D. Rekow, J. Dent. Res. 1997, in press.

S. Suresh, in “Fatigue of materials,” (Cambridge University Press, Cambridge, 1991).

B. S. Kraus, R. E. Jordan and L. Abrams, in “A study of the masticatory system: Dental anatomy and occlusion,” (Williams and Wilkins Company, Baltimore, MD, 1969).

IDEAS, Structural Dynamics Research Corporation, Masters Series 5.0, (Milford OH, 1990).

R. G. Craig and F. A. Peyton, J. Dent. Res. 40 (1961) 936.

B. Van Meerbeek, G. Willems, J. P. Celis, J. R. Roos, M. Braem, P. Lmbrechts and G. Vanherle, J. Dent. Res. 72 (1993) 1434.

R. W. Thresher and G. E. Saito, J. Biomech. 6 (1973) 443.

W. J. O'brien, in “Dental materials and their selection,” 2nd edition (Quintessence Publishing Co., Illinois, 1997).

I. R. Spears, R. Van Noort, R. H. Crompton, G. E. Cardew and I. C. Howard, J. Dent. Res. 72 (1993) 1526.

R. M. Jones, in “Mechanics of composite materials,” (Hemisphere Publishing Corp., 1975).

K. A. S. Abaqus, Hibbit Inc., Version 5.7, (Providence RI, 1998).

J. F. Bates, G. D. Stafford and A. Harrison, J. Oral Rehab. 2 (1975) 349.

G. E. Carlsson, Front. Oral Phys. 1 (1974) 265.

M. C. R. B. Peters and H. W. Poort, J. Dent. Res. 62 (1983) 358.

O. M. El Mowafy and D. C. Watts, J. Dent. Res. 65 (1986) 677.

S. T. Rasmussen and R. E. Patchin, J. Dent. Res. 63 (1984) 1362.

J. C. Newman and I. S. Raju, in “Computational methods in the mechanics of fracture,” edited by S. N. Atluri (Elsevier North Holland, New York, 1986).

R. I. Sakaguchi, M. Cross and W. H. Douglas, Dent. Mater. 8 (1992) 131.