The extended skew Gaussian process for regression

Springer Science and Business Media LLC - Tập 72 - Trang 317-330 - 2014
M. T. Alodat 1, M. Y. AL-Rawwash2
1Department of Mathematics, Statistics and Physics, Qatar University, Doha, Qatar
2Department of Mathematics, University of Sharjah, Sharjah, United Arab Emirates

Tóm tắt

In this article, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression (ESGP) model. The ESGP model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGP model at a new input. Also we apply the ESGP model to FOREX data and we find that it fits the Forex data better than the GPR model.

Tài liệu tham khảo

Adcock, C.J., Shutes, K.: On the multivariate extended skew-normal, normal exponential and normal-gamma distributions. J. Stat. Theory Pract. 6(4), 636–664 (2012) Alodat, M.T., AL-Rawwash, M.Y.: Skew Gaussian random field. J. Comput. Appl. Math. 232(2), 496–504 (2009) Azzalini, A.: A class of distributions which includes the normal ones. Scand. J. Stat. 12, 171–178 (1985) Azzalini, A., Capitanio, A.: Statistical applications of the multivariate skew-normal distribution. J. R. Stat. Soc. B 61(3), 579–602 (1999) Azzalini, A., Dalla Valle, A.: The multivariate skew-normal distribution. Biometrika 83, 715–726 (1996) Brahim-Belhouari, S., Bermak, A.: Gaussian process for non-stationary time series prediction. Comput. Stat. Data Anal. 47, 705–712 (2004) Cancho, V.G., Lachos, V.H., Ortega, E.M.M.: A nonlinear regression model with skew-normal errors. Stat. Papers 15, 547–558 (2010) Chen, N., Qian, Z., Nabney, I., Meng, X.: Short-term wind power forecasting using Gaussian processes. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, 2790–2796 (2013) De Brabanter, K., De Brabanter, J., Suykens, J.A.K., Demoor, B.: Kernel regression in the presence of correlated errors. J. Mach. Learn. Res. 12, 1955–1976 (2011) De Oliveira, V., Kedem, B., Short, D.A.: Bayesian prediction of transformed Gaussian random fields. J. Am. Stat. Assoc. 92, 1422–1433 (1997) Fyfe, C., Leen, G., Lai, P.L.: Gaussian processes for canonical correlation analysis. Neuro Comput. 71, 3077–3088 (2008) Girard, A., Rasmussen, C.E., Qui\(\tilde{{\rm n}}\)onero-Candela, J., Murray-Smith, R.: Gaussian process priors with uncertain inputs—application to multiple-step ahead time series forecasting. Adv. Neural Inf. Process. Syst. 15, 545–552 (2003) Hachino, T., Kadirkamanathan, V.: Multiple Gaussian process models for direct time series forecasting. IEEJ Trans. Electr. Electron. Eng. 6(3), 245–252 (2011) Kim, H., Mallick, B.K.: A Bayesian prediction using the skew Gaussian distribution. J. Stat. Plan. Inference 120, 85–101 (2004) Kocijan, J., Murray-Smith, R., Rasmussen, C.E., Girard, A.: Gaussian Process Model Based Predictive Control. In: Proceeding of the American Control Conference, Boston, Massachuselts, pp. 2214–2219 (2004) Kuss, M.: Gaussian process models for robust regression, classification, and reinforcement learning. Ph.D. thesis, Technische Universitït Darmstadt (2006) Macke, J.H., Gerwinn, S., White, L.E., Kaschube, M., Bethge, M.: Gaussian process methods for estimating cortical maps. Neuroimage 56(2), 570–581 (2011) Minozzo, M., Ferracuti, L.: On the existence of some skew-normal stationary processes. Chil. J. Stat. 3(2), 157–170 (2012) Ou, P., Wang, H.: Modelling and forecasting stock market volatility by Gaussian processes based on GARCH, EGARCH and GJR. In: Proceeding of the World Congress on Engineering, vol. I, pp. 338–342 (2011) Rasmussen, C.E.: Evaluation of Gaussian processes and other methods for non-linear regression. University of Toronto, Toronto, Canada (1996) Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT press, Cambridge (2006) Schmidt, A.M., Conceição, M.F., Moreira, G.A.: Investigating the sensitivity of Gaussian processes to the choice of their correlation functions and prior specifications. J. Stat. Comput. Simul. 78(8), 681–699 (2008) Vanhatalo, J., Jylanki, P., Vehtari, A.: Gaussian process regression with student t likelihood. Adv. Neural Inf. Process. Syst. 12, 3227–3257 (2011) Zareifard, H., Khaledi, M.J.: Non-Gaussian modelling of spatial data using scale mixing of a unified skew Gaussian process. J. Multivar. Anal. 114, 16–28 (2013) Zhang, H., El-Shaarawi, A.: On spatial skew-Gaussian processes and applications. Environmetrics 21(1), 33–47 (2010)