The extended Zeilberger algorithm with parameters

Journal of Symbolic Computation - Tập 47 - Trang 643-654 - 2012
William Y.C. Chen1, Qing-Hu Hou1, Yan-Ping Mu2
1Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, PR China
2College of Science, Tianjin University of Technology, Tianjin 300384, PR China

Tài liệu tham khảo

Andrews, 1996, Pfaff’s Method III: Comparison with the WZ method, Electron. J. Combin. (Foata Festschrift), 3 Andrews, 1998, Pfaff’s method I: The Mills–Robbins–Rumsey determinant, Discrete Math., 193, 43, 10.1016/S0012-365X(98)00133-2 Böing, 1999, Algorithms for q-hypergeometric summation in computer algebra, J. Symbolic Comput., 28, 777, 10.1006/jsco.1998.0339 Chen, 2009, Extended Zeilberger’s algorithm for identities on Bernoulli and Euler polynomials, J. Number Theory, 129, 2111, 10.1016/j.jnt.2009.01.026 Chyzak, 2000, An extension of Zeilberger’s fast algorithm to general holonomic functions, Discrete Math., 317, 115, 10.1016/S0012-365X(99)00259-9 Gasper, 1990 Gosper, 1978, Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75, 40, 10.1073/pnas.75.1.40 Karr, 1981, Summation in finite terms, J. ACM, 28, 305, 10.1145/322248.322255 Koekoek, R., Swarttouwu, R.F., 1998. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Preprint. Koepf, 1998, Representations of orthogonal polynomials, J. Comput. Appl. Math., 90, 57, 10.1016/S0377-0427(98)00023-5 Paule, P., 2005. Contiguous relations and creative telescoping. Preprint. Paule, 1997, A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to q-hypergeometric telescoping, in Special Functions, q-Series and Related Topics, Fields Inst. Commun., 14, 179 Ronveaux, A., 1996. Orthogonal polynomials: connection and linearization coefficients. In: M. Alfaro et al. (Eds). Proceedings of the International Workshop on Orthogonal Polynomials in Mathematical Physics, pp. 131–142. Schneider, 2005, Solving parameterized linear difference equations in terms of indefinite nested sums and products, J. Difference Equ. Appl., 11, 799, 10.1080/10236190500138262 Wilf, 1992, An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Invent. Math., 108, 575, 10.1007/BF02100618 Zeilberger, 1991, The method of creative telescoping, J. Symbolic Comput., 11, 195, 10.1016/S0747-7171(08)80044-2