The experimental approach into the influence of external inductance on the discharge characteristic of HiPIMS

Journal of Theoretical and Applied Physics - Tập 13 Số 4 - Trang 289-297 - 2019
Saeed Ghasemi1, Pourya Seyfi1, Alireza Farhadizadeh1, Hamid Ghomi1
1Laser and Plasma Research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran

Tóm tắt

Abstract The main objective of the current paper is to describe the effect of external inductance (EI) on the current discharge waveforms of HiPIMS at different pulse-on time (Pon) and its relation with static deposition rate and topographical properties of deposited titanium thin films, which is investigated by scanning electron microscope and atomic force microscope. It has shown that the higher the EI, independent of the Pon, the higher the peak power is. The delay time also extensively increases when an EI is implemented into the circuit. However, the rise time does not have a linear dependency with the EI and its behavior changes to some extent at different Pon. By increasing the EI from zero to 30 mH at Pon = 60 μs, the peak power subsequently rises from 11 to 32 kW at constant time-average power. Meanwhile, the deposition rate decreases from 8.5 to 1.5 nm/min, which is mainly attributed to the metal ions return to the target surface and nonlinear dependency of sputtering yield with applied voltage. It was also revealed that the higher peak power has no special effect on the surface roughness of titanium thin films deposited by HiPIMS.

Từ khóa


Tài liệu tham khảo

Baptista, A., Silva, F., Porteiro, J., Míguez, J., Pinto, G., Fernandes, L.: On the physical vapour deposition (PVD): evolution of magnetron sputtering processes for industrial applications. Procedia Manuf. 17, 746–757 (2018)

Alami, J., Maric, Z., Busch, H., Klein, F., Grabowy, U., Kopnarski, M.: Enhanced ionization sputtering: a concept for superior industrial coatings. Surf. Coat. Technol. 255, 43–51 (2014). https://doi.org/10.1016/j.surfcoat.2013.11.040

Paulitsch, J., Schenkel, M., Zufraß, T., Mayrhofer, P.H., Münz, W.-D.: Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit. Thin Solid Films 518(19), 5558–5564 (2010)

Alexeeva, O., Fateev, V.: Application of the magnetron sputtering for nanostructured electrocatalysts synthesis. Int. J. Hydrogen Energy 41(5), 3373–3386 (2016)

Solov’ev, A.A., Sochugov, N.S., Oskomov, K.V., Rabotkin, S.V.: Investigation of plasma characteristics in an unbalanced magnetron sputtering system. Plasma Phys. Rep. 35(5), 399–408 (2009). https://doi.org/10.1134/s1063780x09050055

Nakao, S., Yukimura, K., Ogiso, H., Nakano, S., Sonoda, T.: Effects of Ar gas pressure on microstructure of DLC films deposited by high-power pulsed magnetron sputtering. Vacuum 89, 261–266 (2013). https://doi.org/10.1016/j.vacuum.2012.07.004

Biswas, B., Purandare, Y., Hovsepian, P.E., Khan, I.: Study of coating defects and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings. In: 60 th Annual Technical Conference Proceedings Providence, Rhode Island, Apr 29–May 4 (2017). https://doi.org/10.14332/svc17.proc.42827

Dai, H.Y., Cheng, X.R., Wang, C.F., Xue, Y.C., Chen, Z.P.: Structural, optical and electrical properties of amorphous carbon films deposited by pulsed unbalanced magnetron sputtering. Opt. Int. J.Light Electron Opt. 126(7–8), 861–864 (2015). https://doi.org/10.1016/j.ijleo.2015.02.047

Kelly, P.J., Arnell, R.D.: Development of a novel structure zone model relating to the closed-field unbalanced magnetron sputtering system. J. Vac. Sci. Technol. A Vac. Surf. Films 16(5), 2858–2869 (1998). https://doi.org/10.1116/1.581432

Byon, E., Oates, T.W., Anders, A.: Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition. Appl. Phys. Lett. 82(10), 1634–1636 (2003)

Anders, A., Anders, S., Brown, I.G.: Transport of vacuum arc plasmas through magnetic macroparticle filters. Plasma Sources Sci. Technol. 4(1), 1 (1995)

Lattemann, M., Ehiasarian, A., Bohlmark, J., Persson, P., Helmersson, U.: Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel. Surf. Coat. Technol. 200(22–23), 6495–6499 (2006)

Lin, J., Moore, J.J., Sproul, W.D., Mishra, B., Wu, Z., Wang, J.: The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering. Surf. Coat. Technol. 204(14), 2230–2239 (2010). https://doi.org/10.1016/j.surfcoat.2009.12.013

Hovsepian, P.E., Sugumaran, A.A., Purandare, Y., Loch, D.A.L., Ehiasarian, A.P.: Effect of the degree of high power impulse magnetron sputtering utilisation on the structure and properties of TiN films. Thin Solid Films 562, 132–139 (2014). https://doi.org/10.1016/j.tsf.2014.04.002

Hopwood, J.: Ionized physical vapor deposition of integrated circuit interconnects. Phys. Plasmas 5(5), 1624–1631 (1998)

Rossnagel, S., Hopwood, J.: Metal ion deposition from ionized mangetron sputtering discharge. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Proces. Meas. Phenom. 12(1), 449–453 (1994)

Rossnagel, S., Hopwood, J.: Magnetron sputter deposition with high levels of metal ionization. Appl. Phys. Lett. 63(24), 3285–3287 (1993)

Wang, W., Foster, J., Wendt, A.E., Booske, J.H., Onuoha, T., Sandstrom, P.W., Liu, H., Gearhart, S.S., Hershkowitz, N.: Magnetic-field-enhanced rf argon plasma for ionized sputtering of copper. Appl. Phys. Lett. 71(12), 1622–1624 (1997)

Rezek, J., Vlček, J., Houška, J., Čapek, J., Baroch, P.: Enhancement of the deposition rate in reactive mid-frequency ac magnetron sputtering of hard and optically transparent ZrO2 films. Surf. Coat. Technol. 336, 54–60 (2018)

Sidelev, D.V., Bleykher, G.A., Krivobokov, V.P., Koishybayeva, Z.: High-rate magnetron sputtering with hot target. Surf. Coat. Technol. 308, 168–173 (2016)

Burcalova, K., Hecimovic, A., Ehiasarian, A.P.: Ion energy distributions and efficiency of sputtering process in HIPIMS system. J. Phys. D Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/11/115306

Hála, M., Zabeida, O., Baloukas, B., Klemberg-Sapieha, J.E., Martinu, L.: Time- and species-resolved plasma imaging as a new diagnostic approach for HiPIMS discharge characterization. IEEE Trans. Plasma Sci. 38(11), 3035–3039 (2010). https://doi.org/10.1109/tps.2010.2064183

Ehiasarian, A.P., Wen, J.G., Petrov, I.: Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion. J. Appl. Phys. 101(5), 054301 (2007). https://doi.org/10.1063/1.2697052

Hecimovic, A., von Keudell, A., Schulz-von der Gathen, V., Winter, J.: Various shapes of plasma spokes observed in HiPIMS. IEEE Trans. Plasma Sci. 42(10), 2810–2811 (2014). https://doi.org/10.1109/tps.2014.2330454

West, G., Kelly, P., Bradley, J.: A comparison of thin silver films grown onto zinc oxide via conventional magnetron sputtering and HiPIMS deposition. IEEE Trans. Plasma Sci. 38(11), 3057–3061 (2010)

Oliveira, J.C., Ferreira, F., Anders, A., Cavaleiro, A.: Reduced atomic shadowing in HiPIMS: role of the thermalized metal ions. Appl. Surf. Sci. 433, 934–944 (2018)

Li, G., Sun, J., Xu, Y., Xu, Y., Gu, J., Wang, L., Huang, K., Liu, K., Li, L.: Microstructure, mechanical properties, and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS. Surf. Coat. Technol. 353, 274–281 (2018)

Hovsepian, P.E., Ehiasarian, A., Purandare, Y., Mayr, P., Abstoss, K., Feijoo, M.M., Schulz, W., Kranzmann, A., Lasanta, M., Trujillo, J.: Novel HIPIMS deposited nanostructured CrN/NbN coatings for environmental protection of steam turbine components. J. Alloys Compd. 746, 583–593 (2018)

Anders, A., Andersson, J., Ehiasarian, A.: High power impulse magnetron sputtering: current–voltage–time characteristics indicate the onset of sustained self-sputtering. J. Appl. Phys. 102(11), 113303 (2007). https://doi.org/10.1063/1.2817812

Gudmundsson, J.T., Brenning, N., Lundin, D., Helmersson, U.: High power impulse magnetron sputtering discharge. J. Vac. Sci. Technol. A Vac. Surf. Films 30(3), 030801 (2012). https://doi.org/10.1116/1.3691832

Wu, Z., Xiao, S., Ma, Z., Cui, S., Ji, S., Tian, X., Fu, R.K., Chu, P.K., Pan, F.: Discharge current modes of high power impulse magnetron sputtering. AIP Adv. 5(9), 097178 (2015)

Huo, C., Lundin, D., Raadu, M.A., Anders, A., Gudmundsson, J.T., Brenning, N.: On the road to self-sputtering in high power impulse magnetron sputtering: particle balance and discharge characteristics. Plasma Sources Sci. Technol. 23(2), 025017 (2014). https://doi.org/10.1088/0963-0252/23/2/025017

McLain, J., Raman, P., Patel, D., Spreadbury, R., Uhlig, J., Shchelkanov, I., Ruzic, D.: Linear magnetron HiPIMS high deposition rate magnet pack. Vacuum 155, 559–565 (2018)

Zuo, X., Chen, R., Ke, P., Wang, A.: Gas breakdown and discharge formation in high-power impulse magnetron sputtering. IEEE Trans. Plasma Sci. 47(2), 1215–1222 (2019)

Rabotkin, S., Oskirko, V., Ionov, I., Semenov, V., Shipilova, A., Solovyev, A.: Process stabilization during reactive high power impulse magnetron sputtering of Ce/Gd target. In: Journal of Physics: Conference Series 2018, vol. 3, p. 032078. IOP Publishing

Alami, J., Sarakinos, K., Uslu, F., Wuttig, M.: On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering. J. Phys. D Appl. Phys. 42(1), 015304 (2008)

Moens, F., Konstantinidis, S., Depla, D.: The target material influence on the current pulse during high power pulsed magnetron sputtering. Front. Phys. 5, 51 (2017)

Zuo, X., Chen, R., Liu, J., Ke, P., Wang, A.: The influence of superimposed DC current on electrical and spectroscopic characteristics of HiPIMS discharge. AIP Adv. 8(1), 015132 (2018)

Revel, A., Minea, T., Costin, C.: 2D PIC-MCC simulations of magnetron plasma in HiPIMS regime with external circuit. Plasma Sources Sci. Technol. 27(10), 105009 (2018)

Ghasemi, S., Farhadizadeh, A.R., Amadeh, A.A., Ghomi, H.: Structural and morphological properties of TiN deposited by magnetron sputtering. Surf. Topogr. Metrol. Prop. 6, 045003 (2018)

Anders, A.: Deposition rates of high power impulse magnetron sputtering: physics and economics. J. Vac. Sci. Technol. A Vac. Surf. Films 28(4), 783–790 (2010). https://doi.org/10.1116/1.3299267

Anders, A.: Tutorial: reactive high power impulse magnetron sputtering (R-HiPIMS). J. Appl. Phys. 121(17), 171101 (2017)