The expansion of GPCR transactivation-dependent signalling to include serine/threonine kinase receptors represents a new cell signalling frontier

Cellular and Molecular Life Sciences - Tập 72 - Trang 799-808 - 2014
Danielle Kamato1, Muhamad Ashraf Rostam1, Rebekah Bernard1, Terrence J. Piva2, Nitin Mantri3, Daniel Guidone1, Wenhua Zheng4, Narin Osman1,5, Peter J. Little1,5
1Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, Australia
2Discipline of Cell Biology and Anatomy, School of Medical Sciences and Health Innovations Research Institute, Bundoora, Australia
3School of Applied Sciences, RMIT University, Bundoora, Australia
4State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
5Department of Medicine, Nursing and Health Sciences and Immunology, Monash University School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran, Australia

Tóm tắt

G protein-coupled receptor (GPCR) signalling is mediated through transactivation-independent signalling pathways or the transactivation of protein tyrosine kinase receptors and the recently reported activation of the serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Since the original observation of GPCR transactivation of protein tyrosine kinase receptors, there has been considerable work on the mechanism of transactivation and several pathways are prominent. These pathways include the “triple membrane bypass” pathway and the generation of reactive oxygen species. The recent recognition of GPCR transactivation of serine/threonine kinase receptors enormously broadens the GPCR signalling paradigm. It may be predicted that the transactivation of serine/threonine kinase receptors would have mechanistic similarities with transactivation of tyrosine kinase pathways; however, initial studies suggest that these two transactivation pathways are mechanistically distinct. Important questions are the relative importance of tyrosine and serine/threonine transactivation pathways, the contribution of transactivation to overall GPCR signalling, mechanisms of transactivation and the range of cell types in which this phenomenon occurs. The ultimate significance of transactivation-dependent signalling remains to be defined but it appears to be prominent and if so will represent a new cell signalling frontier.

Tài liệu tham khảo

Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22(7):368–376 Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3(9):639–650. doi:10.1038/nrm908 Spehr M, Munger SD (2009) Olfactory receptors: G protein-coupled receptors and beyond. J Neurochem 109(6):1570–1583. doi:10.1111/j.1471-4159.2009.06085.x Robison GA, Butcher RW, Sutherland EW (1967) Adenyl cyclase as an adrenergic receptor. Ann N Y Acad Sci 139(3):703–723. doi:10.1111/j.1749-6632.1967.tb41239.x Gilman AG (1995) Nobel Lecture. G proteins and regulation of adenylyl cyclase. Biosci Rep 15(2):65–97 Rodbell M (1995) Nobel Lecture. Signal transduction: evolution of an idea. Biosci Rep 15(3):117–133 Kobilka BK (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta 1768(4):794–807. doi:10.1016/j.bbamem.2006.10.021 Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25(8):413–422. doi:10.1016/j.tips.2004.06.006 Lefkowitz RJ (2007) Seven transmembrane receptors: something old, something new. Acta Physiol 190(1):9–19. doi:10.1111/j.1365-201X.2007.01693.x Chung KY, Rasmussen SG, Liu T, Li S, DeVree BT, Chae PS, Calinski D, Kobilka BK, Woods VL Jr, Sunahara RK (2011) Conformational changes in the G protein Gs induced by the beta2 adrenergic receptor. Nature 477(7366):611–615. doi:10.1038/nature10488 Gether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, Kobilka BK (1997) Agonists induce conformational changes in transmembrane domains III and VI of the beta2 adrenoceptor. EMBO J 16(22):6737–6747. doi:10.1093/emboj/16.22.6737 Neer EJ (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80(2):249–257 Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459(7245):356–363. doi:10.1038/nature08144 Vogel R, Siebert F (2001) Conformations of the active and inactive states of opsin. J Biol Chem 276(42):38487–38493. doi:10.1074/jbc.M105423200 Black JW, Stephenson JS (1962) Pharmacology of a new adrenergic beta-receptor-blocking compound (Nethalide). Lancet 2(7251):311–314 Black JW, Duncan WA, Durant CJ, Ganellin CR, Parsons EM (1972) Definition and antagonism of histamine H 2-receptors. Nature 236(5347):385–390 Gutkind JS (1998) Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene 17(11):1331–1342. doi:10.1038/sj.onc.1202186 Luttrell LM (2008) Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Mol Biotechnol 39(3):239–264. doi:10.1007/s12033-008-9031-1 Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. doi:10.1146/annurev-pharmtox-032112-135923 Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379(6565):557–560 Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402(6764):884–888. doi:10.1038/47260 Kamato D, Burch ML, Piva TJ, Rezaei HB, Rostam MA, Xu S, Zheng W, Little PJ, Osman N (2013) Transforming growth factor-beta signalling: role and consequences of Smad linker region phosphorylation. Cell Signal 25(10):2017–2024. doi:10.1016/j.cellsig.2013.06.001 Rezaei HB, Kamato D, Ansari G, Osman N, Little PJ (2011) Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle. Clin Exp Pharmacol Physiol. doi:10.1111/j.1440-1681.2011.05592.x Burch ML, Yang SN, Ballinger ML, Getachew R, Osman N, Little PJ (2010) TGF-β stimulates biglycan synthesis via p38 and ERK phosphorylation of the linker region of Smad 2. Cell Mol Life Sci 67:2077–2090 Burch ML, Zheng W, Little PJ (2011) Smad linker region phosphorylation in the regulation of extracellular matrix synthesis. Cell Mol Life Sci 68(1):97–107. doi:10.1007/s00018-010-0514-4 Kamato D, Burch ML, Osman N, Zheng W, Little PJ (2013) Therapeutic implications of endothelin and thrombin G-protein-coupled receptor transactivation of tyrosine and serine/threonine kinase cell surface receptors. J Pharm Pharmacol 65(4):465–473. doi:10.1111/j.2042-7158.2012.01577.x Little PJ, Burch ML, Al-Aryahi S, Zheng W (2011) The paradigm of g protein receptor transactivation: a mechanistic definition and novel example. Sci World J 11:709–714. doi:10.1100/tsw.2011.75 Wynne BM, Chiao CW, Webb RC (2009) Vascular smooth muscle cell signaling mechanisms for contraction to angiotensin II and endothelin-1. J Am Soc Hypertension 3(2):84–95. doi:10.1016/j.jash.2008.09.002 Murasawa S, Mori Y, Nozawa Y, Gotoh N, Shibuya M, Masaki H, Maruyama K, Tsutsumi Y, Moriguchi Y, Shibazaki Y, Tanaka Y, Iwasaka T, Inada M, Matsubara H (1998) Angiotensin II type 1 receptor-induced extracellular signal-regulated protein kinase activation is mediated by Ca2+/calmodulin-dependent transactivation of epidermal growth factor receptor. Circ Res 82(12):1338–1348 Lautrette A, Li S, Alili R, Sunnarborg SW, Burtin M, Lee DC, Friedlander G, Terzi F (2005) Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 11(8):867–874. doi:10.1038/nm1275 Thomas WG, Brandenburger Y, Autelitano DJ, Pham T, Qian H, Hannan RD (2002) Adenoviral-directed expression of the type 1A angiotensin receptor promotes cardiomyocyte hypertrophy via transactivation of the epidermal growth factor receptor. Circ Res 90(2):135–142 George AJ, Thomas WG, Hannan RD (2010) The renin-angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer 10(11):745–759. doi:10.1038/nrc2945 Burch ML, Ballinger ML, Yang SN, Getachew R, Itman C, Loveland K, Osman N, Little PJ (2010) Thrombin stimulation of proteoglycan synthesis in vascular smooth muscle is mediated by protease-activated receptor-1 transactivation of the transforming growth factor beta type I receptor. J Biol Chem 285(35):26798–26805. doi:10.1074/jbc.M109.092767 Little PJ, Burch ML, Getachew R, Al-aryahi S, Osman N (2010) Endothelin-1 stimulation of proteoglycan synthesis in vascular smooth muscle is mediated by endothelin receptor transactivation of the transforming growth factor-[beta] type I receptor. J Cardiovasc Pharmacol 56(4):360–368. doi:10.1097/FJC.0b013e3181ee6811 Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15(5):551–561. doi:10.1161/01.atv.15.5.551 Little PJ, Tannock L, Olin KL, Chait A, Wight TN (2002) Proteoglycans synthesized by arterial smooth muscle cells in the presence of transforming growth factor-β1 exhibit increased binding to LDLs. Arterioscler Thromb Vasc Biol 22(1):55–60. doi:10.1161/hq0102.101100 Yang SNY, Burch ML, Tannock LR, Evanko S, Osman N, Little PJ (2010) Transforming growth factor-β regulation of proteoglycan synthesis in vascular smooth muscle: contribution to lipid binding and accelerated atherosclerosis in diabetes. J of Diabetes 2(4):233–242. doi:10.1111/j.1753-0407.2010.00089.x Burch ML, Getachew R, Osman N, Febbraio MA, Little PJ (2013) Thrombin-mediated proteoglycan synthesis utilizes both protein-tyrosine kinase and serine/threonine kinase receptor transactivation in vascular smooth muscle cells. J Biol Chem 288(10):7410–7419. doi:10.1074/jbc.M112.400259 Sorescu D (2006) Smad3 mediates angiotensin II- and TGF-beta1-induced vascular fibrosis: Smad3 thickens the plot. Circ Res 98(8):988–989. doi:10.1161/01.RES.0000221824.87718.c0 Leask A (2010) Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106(11):1675–1680. doi:10.1161/CIRCRESAHA.110.217737 Xu MY, Porte J, Knox AJ, Weinreb PH, Maher TM, Violette SM, McAnulty RJ, Sheppard D, Jenkins G (2009) Lysophosphatidic acid induces alphavbeta6 integrin-mediated TGF-beta activation via the LPA2 receptor and the small G protein G alpha(q). Am J Pathol 174(4):1264–1279. doi:10.2353/ajpath.2009.080160 Jenkins RG, Su X, Su G, Scotton CJ, Camerer E, Laurent GJ, Davis GE, Chambers RC, Matthay MA, Sheppard D (2006) Ligation of protease-activated receptor 1 enhances alpha(v)beta6 integrin-dependent TGF-beta activation and promotes acute lung injury. J Clin Invest 116(6):1606–1614. doi:10.1172/JCI27183 Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281(6):H2337–H2365 Wetzker R, Bohmer FD (2003) Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 4(8):651–657. doi:10.1038/nrm1173 Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J 16(23):7032–7044. doi:10.1093/emboj/16.23.7032 Voisin L, Foisy S, Giasson E, Lambert C, Moreau P, Meloche S (2002) EGF receptor transactivation is obligatory for protein synthesis stimulation by G protein-coupled receptors. Am J Physiol Cell Physiol 283(2):C446–C455. doi:10.1152/ajpcell.00261.2001 Gschwind A, Hart S, Fischer OM, Ullrich A (2003) TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J 22(10):2411–2421. doi:10.1093/emboj/cdg231 Frank GD, Eguchi S (2003) Activation of tyrosine kinases by reactive oxygen species in vascular smooth muscle cells: significance and involvement of EGF receptor transactivation by angiotensin II. Antioxid Redox Signal 5(6):771–780. doi:10.1089/152308603770380070 Shida D, Kitayama J, Yamaguchi H, Yamashita H, Mori K, Watanabe T, Yatomi Y, Nagawa H (2004) Sphingosine 1-phosphate transactivates c-Met as well as epidermal growth factor receptor (EGFR) in human gastric cancer cells. FEBS Lett 577(3):333–338. doi:10.1016/j.febslet.2004.10.024 Kalmes A, Daum G, Clowes AW (2001) EGFR transactivation in the regulation of SMC function. Ann N Y Acad Sci 947:42–54 discussion 54-45 Liu Y, Li M, Warburton RR, Hill NS, Fanburg BL (2007) The 5-HT transporter transactivates the PDGFbeta receptor in pulmonary artery smooth muscle cells. FASEB J 21(11):2725–2734. doi:10.1096/fj.06-8058com Puehringer D, Orel N, Luningschror P, Subramanian N, Herrmann T, Chao MV, Sendtner M (2013) EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons. Nat Neurosci 16(4):407–415. doi:10.1038/nn.3333 Yokote H, Fujita K, Jing X, Sawada T, Liang S, Yao L, Yan X, Zhang Y, Schlessinger J, Sakaguchi K (2005) Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains. Proc Natl Acad Sci USA 102(52):18866–18871. doi:10.1073/pnas.0509741102 Zhao D, Bakirtzi K, Zhan Y, Zeng H, Koon HW, Pothoulakis C (2011) Insulin-like growth factor-1 receptor transactivation modulates the inflammatory and proliferative responses of neurotensin in human colonic epithelial cells. J Biol Chem 286(8):6092–6099. doi:10.1074/jbc.M110.192534 Wang HH, Hsieh HL, Yang CM (2010) Calmodulin kinase II-dependent transactivation of PDGF receptors mediates astrocytic MMP-9 expression and cell motility induced by lipoteichoic acid. J Neuroinflamm 7:84. doi:10.1186/1742-2094-7-84 Tsai CL, Chen WC, Lee IT, Chi PL, Cheng SE, Yang CM (2014) c-Src-dependent transactivation of PDGFR contributes to TNF-alpha-induced MMP-9 expression and functional impairment in osteoblasts. Bone 60:186–197. doi:10.1016/j.bone.2013.12.014 Linseman DA, Benjamin CW, Jones DA (1995) Convergence of angiotensin II and platelet-derived growth factor receptor signaling cascades in vascular smooth muscle cells. J Biol Chem 270(21):12563–12568 Heeneman S, Haendeler J, Saito Y, Ishida M, Berk BC (2000) Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc. J Biol Chem 275(21):15926–15932. doi:10.1074/jbc.M909616199 Mondorf UF, Geiger H, Herrero M, Zeuzem S, Piiper A (2000) Involvement of the platelet-derived growth factor receptor in angiotensin II-induced activation of extracellular regulated kinases 1 and 2 in human mesangial cells. FEBS Lett 472(1):129–132 Goppelt-Struebe M, Fickel S, Reiser CO (2000) The platelet-derived-growth-factor receptor, not the epidermal-growth-factor receptor, is used by lysophosphatidic acid to activate p42/44 mitogen-activated protein kinase and to induce prostaglandin G/H synthase-2 in mesangial cells. Biochem J 345(Pt 2):217–224 Herrlich A, Daub H, Knebel A, Herrlich P, Ullrich A, Schultz G, Gudermann T (1998) Ligand-independent activation of platelet-derived growth factor receptor is a necessary intermediate in lysophosphatidic, acid-stimulated mitogenic activity in L cells. Proc Natl Acad Sci USA 95(15):8985–8990 George AJ, Purdue BW, Gould CM, Thomas DW, Handoko Y, Qian H, Quaife-Ryan GA, Morgan KA, Simpson KJ, Thomas WG, Hannan RD (2013) A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation. J Cell Sci 126(Pt 23):5377–5390. doi:10.1242/jcs.128280 Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272(48):30429–30438 Hua H, Munk S, Whiteside CI (2003) Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction. Am J Physiol Renal Physiol 284(2):F303–F312. doi:10.1152/ajprenal.00127.2002 Ushio-Fukai M, Hilenski L, Santanam N, Becker PL, Ma Y, Griendling KK, Alexander RW (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem 276(51):48269–48275. doi:10.1074/jbc.M105901200 Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411(6835):355–365 Burch ML, Osman N, Getachew R, Al-Aryahi S, Poronnik P, Zheng W, Hill MA, Little PJ (2012) G protein coupled receptor transactivation: extending the paradigm to include serine/threonine kinase receptors. Int J Biochem Cell Biol 44(5):722–727. doi:10.1016/j.biocel.2012.01.018 Chung H, Ramachandran R, Hollenberg MD, Muruve DA (2013) Proteinase-activated receptor-2 transactivation of epidermal growth factor receptor and transforming growth factor-beta receptor signaling pathways contributes to renal fibrosis. J Biol Chem 288(52):37319–37331. doi:10.1074/jbc.M113.492793 Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238(4826):491–497 Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687 Tatler AL, John AE, Jolly L, Habgood A, Porte J, Brightling C, Knox AJ, Pang L, Sheppard D, Huang X, Jenkins G (2011) Integrin alphavbeta5-mediated TGF-beta activation by airway smooth muscle cells in asthma. J Immunol 187(11):6094–6107. doi:10.4049/jimmunol.1003507 Scotton CJ, Krupiczojc MA, Konigshoff M, Mercer PF, Lee YC, Kaminski N, Morser J, Post JM, Maher TM, Nicholson AG, Moffatt JD, Laurent GJ, Derian CK, Eickelberg O, Chambers RC (2009) Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J Clin Investig 119(9):2550–2563. doi:10.1172/JCI33288 Worthington JJ, Czajkowska BI, Melton AC, Travis MA (2011) Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3+ regulatory T cells via integrin alphavbeta8. Gastroenterology 141(5):1802–1812. doi:10.1053/j.gastro.2011.06.057 Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85(5):683–693 Kramarenko II, Bunni MA, Raymond JR, Garnovskaya MN (2010) Bradykinin B2 receptor interacts with integrin alpha5beta1 to transactivate epidermal growth factor receptor in kidney cells. Mol Pharmacol 78(1):126–134. doi:10.1124/mol.110.064840 Belmadani S, Zerfaoui M, Boulares HA, Palen DI, Matrougui K (2008) Microvessel vascular smooth muscle cells contribute to collagen type I deposition through ERK1/2 MAP kinase, alphavbeta3-integrin, and TGF-beta1 in response to ANG II and high glucose. Am J Physiol Heart Circ Physiol 295(1):H69–H76. doi:10.1152/ajpheart.00341.2008 Koch WJ, Hawes BE, Allen LF, Lefkowitz RJ (1994) Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras. Proc Natl Acad Sci U S A 91(26):12706–12710 Little PJ (2013) GPCR responses in vascular smooth muscle can occur predominantly through dual transactivation of kinase receptors and not classical Galphaq protein signalling pathways. Life Sci 92(20–21):951–956. doi:10.1016/j.lfs.2013.03.017 Jain R, Shaul PW, Borok Z, Willis BC (2007) Endothelin-1 induces aveolar epithelial mesenchymal transition through endothelin type A receptor mediated production of TGF-beta 1. Am J Respir Cell Mol Biol 37(1):38–47 Yu B, Zhao X, Yang C, Crane J, Xian L, Lu W, Wan M, Cao X (2012) Parathyroid hormone induces differentiation of mesenchymal stromol/stem cells by enhancing bone morphogenetic protein signaling. J Bone Miner Res 27(9):2001–2014