The existence of multiple positive solutions for a class of semipositone Dirichlet boundary value problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agarwal, R., O’Regan, D.: Nonlinear superlinear singular and nonsingular second order boundary value problems. J. Differ. Equ. 143, 60–95 (1998)
Anuradha, V., Hai, D., Shivaji, R.: Existence results for superlinear semipositone BVP’s. Proc. Am. Math. Soc. 124, 757–746 (1996)
Aris, R.: Introduction to the Analysis of Chemical Reactors. Englewood Cliffs, Prentice-Hall (1965)
Bai, Z.: The method of lower and upper solutions for a bending of an elastic beam equation. J. Math. Anal. Appl. 248, 195–202 (2000)
Castro, A., Maya, C., Shivaji, R.: Nonlinear eigenvalue problems with semipositone. Electron. J. Differ. Equ. Conf. 05, 33–49 (2000)
Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cone. Academic Press, New York (1988)
Ha, K., Lee, Y.: Existence of multiple positive solutions of singular boundary value problems,. Nonlinear Anal. 28, 1429–1438 (1997)
Lan, K., Webb, J.: Positive solutions of semilinear differential equations with singularities. J. Differ. Equ. 148, 407–421 (1998)
Liu, Y.: Global structure of solutions for a class of two-point boundary value problems involving singular and convex or concave nonlinearities. J. Math. Anal. Appl. 322, 75–86 (2006)
Ma, R., Zhang, J., Fu, S.: The method of lower and upper solutions for fourth-order two point boundary value problems. J. Math. Anal. Appl. 215, 415–422 (1997)
Wei, Z.: Positive solution of singular Dirichlet boundary value problems for second order differential equation system. J. Math. Anal. Appl. 328, 1255–1267 (2007)