Vai trò đang phát triển của năng lượng địa nhiệt trong việc giảm carbon tại Hoa Kỳ

Energy and Environmental Science - Tập 14 Số 12 - Trang 6211-6241
Jefferson W. Tester1, Koenraad Beckers1, Adam J. Hawkins1, Maciej Z. Lukawski1
1Cornell Energy Systems Institute, Cornell University, Ithaca, New York, USA

Tóm tắt

Hơn 20% nhu cầu năng lượng sơ cấp của Hoa Kỳ được sử dụng cho việc sưởi ấm trong các lĩnh vực dân cư, thương mại và công nghiệp. Năng lượng địa nhiệt nhiệt độ thấp, có sẵn rộng rãi, có thể được phát triển để cung cấp sưởi ấm với chi phí phải chăng và ít carbon trên toàn Hoa Kỳ.

Từ khóa


Tài liệu tham khảo

EIA – U.S. Energy Information Administration. U.S. energy facts explained, 2020; Available from: https://www.eia.gov/energyexplained/us-energy-facts/

EPA – U.S. Environmental Protection Agency. Inventory of U.S. Greenhouse gas Emissions and Sinks: 1990–2018, 2020. Available from: https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf

C2ES – Center for Climate and Energy Solutions. U.S. State Greenhouse Gas Emissions Targets, 2019; Available from: https://www.c2es.org/document/greenhouse-gas-emissions-targets/

USCA – U.S. Climate Alliance. Climate Leadership across the Alliance, 2019 State Fact Sheets, 2019. Available from: https://www.usclimatealliance.org/s/USCA_2019-State-Factsheets_20191011_compressed.pdf

NCSL – National Conference of State. Greenhouse Gas Emissions Reduction Targets and Market-based Policies, 2020; Available from: https://www.ncsl.org/research/energy/greenhouse-gas-emissions-reduction-targets-and-market-based-policies.aspx

Fox, 2011, Energy Environ. Sci, 4, 10, 10.1039/c1ee01722e

EIA – U.S. Energy Information Administration, 2015 Residential Energy Consumption Survey (RECS), 2018; Available from: https://www.eia.gov/consumption/residential/data/2015/

EIA – U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey (CBECS), 2019; Available from: https://www.eia.gov/consumption/commercial/data/2012

EIA – U.S. Energy Information Administration. State Energy Data System (SEDS): 1960–2018 (complete), 2020; Available from: https://www.eia.gov/state/seds/seds-data-complete.php?sid=US#Consumption

K.McCabe , M.Gleason , T.Reber and K. R.Young , Characterizing U.S. heat demand for potential application of geothermal direct use , In: Transactions - Geothermal Resources Council, 2016

ElDoradoWeather. Mean Total Heating Degree Days, 2021; Available from: https://eldoradoweather.com/climate/USClimateMaps/Lower48States/Temperature/MeanTotalHeatingDegreeDays/Gallery/mean-total-heating-degree-days.html

J.Friedrich , G.Mengpin and A.Tankou , 6 Charts to Understand U.S. State Greenhouse Gas Emissions, 2017; Available from: https://www.wri.org/blog/2017/08/6-charts-understand-us-state-greenhouse-gas-emissions

EPA – U.S. Environmental Protection Agency. State Inventory Tool (SIT), 2021; Available from: https://www.epa.gov/statelocalclimate/state-inventory-and-projection-tool

J. W.Tester , S.Beyers , J. O.Gustafson , T. E.Jordan , J. D.Smith and J. A.Aswad , et al., District geothermal heating using EGS technology to meet carbon neutrality goals: a case study of earth source heat for the Cornell University campus , Proceedings of the World Geothermal Congress 2020+1 , 2020 , 1. Reykavik , Iceland

M. H.Langholtz , B. J.Stokes and L. M.Eaton , Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy , Oak Ridge National Laboratory , Oak Ridge, Tennessee , 2016

Waite, 2020, Joule, 4, 376, 10.1016/j.joule.2019.11.011

NAS – National Acedemy of Sciences, Engineering and M. Accelerating Decarbonization of the U.S. Energy System, 2021

J. W.Tester , T.Reber , K.Beckers , M.Lukawski , E.Camp and G. A.Aguirre , et al., Integrating Geothermal Energy Use into Re-building American Infrastructure , Proceedings, World Geothermal Congress , Melbourne, Australia , 2015

J. W.Tester , T. J.Reber , K. F.Beckers and M. Z.Lukawski , Deep geothermal energy for district heating: lessons learned from the US and beyond , Advanced district heating and cooling (DHC) systems , Elsevier , 2016 , pp. 75–98

D. D.Blackwell , M. C.Richards and Z. S.Frone , SMU Geothermal Resource Map , 2013

DOE – U.S. Department of Energy. Energy Department Announces up to $4 Million for Geothermal Deep Direct-Use Feasibility Studies, 2017; Available from: https://www.energy.gov/eere/articles/energy-department-announces-4-million-geothermal-deep-direct-use-feasibility-studies

H. C. H.Armstead and J. W.Tester , Heat mining: a new source of energy , Spon Press , 1987

IEA – International Energy Agency. Data and Statistics, 2019; Available from: https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energysupply&indicator=TPESbySource

V.Stefansson , World geothermal assessment , Proceedings, World Geothermal Congress , Antalya, Turkey , 2005

B.Goldstein , G.Hiriart , R.Bertani , C.Bromley , L.Gutierrez-Negrin and E.Huenges , et al., Geothermal Energy , in O. Edenhofer , R. Pichs-Madruga , Y. Sokona , K. Seyboth , P. Matschoss and S. Kadner , et al. , IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation , Cambridge University Press , Cambridge, United Kingdom and New York, NY, United States , 2011

Limberger, 2018, Renewable Sustainable Energy Rev., 82, 961, 10.1016/j.rser.2017.09.084

Aghahosseini, 2020, Appl. Energy, 279, 115769, 10.1016/j.apenergy.2020.115769

TNO, EGEC. A prospective study on the geothermal potential in the EU, 2013. Available from: http://www.geoelec.eu/wp-content/uploads/2013/11/Deliverable-2.5-A-prospective-study-on-the-geothermal-potential-in-Europe.pdf

EuroStat. Electricity production, consumption and market overview, 2020; Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_production,_consumption_and_market_overview

G.Wang , K.Li , D.Wen , W.Lin , L.Lin and Z.Liu , et al., Assessment of geothermal resources in China , Proceedings, 38th Workshop on Geothermal Reservoir Engineering , Stanford University , Stanford, California , 2013

J. W.Tester , B. J.Anderson , A. S.Batchelor , D. D.Blackwell , R.DiPippo and E. M.Drake , et al. , The Future of Geothermal Energy – Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century , MIT - Massachusetts Inst Technol. , 2006

Augustine, 2016, Trans. - Geotherm. Resour. Counc.

M.Mullane , M.Gleason , K.McCabe , M.Mooney , T.Reber and K. R.Young , An Estimate of Shallow , Low-Temperature Geothermal Resources of the United States . 2016

U.S. Department of Energy. GeoVision Full Report, 2019. Available from: https://www.energy.gov/eere/geothermal/geovision

I. B.Fridleifsson , R.Bertani , E.Huenges , J. W.Lund , A.Ragnarsson and L.Rybach , The possible role and contribution of geothermal energy to the mitigation of climate change . IPCC scoping meeting on renewable energy sources, proceedings , Luebeck , Germany , 2008 . pp. 59–80

IRENA – International Renewable Energy Agency. Global Energy Transformation. The REmap Transition Pathway. A Roadmap to 2050. Background Report. Abu Dhabi, United Arab Emirates: 2019

F.Schütz , E.Huenges , A.Spalek , D.Bruhn , P.Pérez and M.de Gregorio , Geothermal Electricity: Potential for CO 2 Mitigation, 2013. Available from: http://www.geoelec.eu/wp-content/uploads/2014/02/D4.6.pdf

European Technology and Innovation Platform on Deep Geothermal (ETIP-DG). Vision for deep geothermal, 2018. Available from: https://www.etip-dg.eu/front/wp-content/uploads/ETIP-DG_Vision_web.pdf

EBN – Energie Beheer Nederland. De warmtetransitie: ‘Aardwarmte is een essentiele warmtebron’, 2020; Available from: https://www.ebn.nl/focus/warmtetransitie/?utm_source=linkedin&utm_medium=social&utm_campaign=focus2020_2

Icelandic Government. Iceland's Climate Action Plan for 2018–2030-Summary, 2018; Available from: https://www.government.is/library/Files/Icelands new Climate Action Plan for 2018 2030.pdf

D. E.White and D. L.Williams , Assessment of geothermal resources of the United States, 1975. US Department of the Interior, Geological Survey; 1975

G.Axelsson , V.Stefánsson , G.Björnsson and J.Liu , Sustainable management of geothermal resources and utilization for 100–300 years, In: Proceedings World Geothermal Congress, 2005

C. J.Bromley , M.Mongillo and L.Rybach , Sustainable utilization strategies and promotion of beneficial environmental effects--Having your cake and eating it too. In: Proceedings of the New Zealand Geothermal Workshop 2006, 2006

L.Rybach , T.Megel and W. J.Eugster , At what time scale are geothermal resources renewable? Proc World Geotherm Congr 2000 Kyushu-Tohoku, Japan 2000

Fox, 2013, Geothermics, 46, 42, 10.1016/j.geothermics.2012.09.001

AASG – American Association of State Geologists. Geothermal Data Repository, Borehole Temperature Observations, 2020; Available from: http://repository.stategeothermaldata.org/repository/collection/fd62bbde5b68ce93e4ba348bc703443c/

SMU – Southern Methodist University. Southern Methodist University Borehole Temperature Observation Data, 2020; Available from: http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm

J. C.Rowley , Worldwide geothermal resources , Handbook of geothermal energy , 1982 , pp. 44–176

Mock, 1997, Annu. Rev. Energy Environ., 22, 305, 10.1146/annurev.energy.22.1.305

Tester, 1994, Sci. Glob. Secur., 5, 99, 10.1080/08929889408426418

K.McCabe , K. J.Beckers , K. R.Young and N. J.Blair , GeoVision Analysis Supporting Task Force Report: Thermal Applications. Quantifying Technical, Economic, and Market Potential of Geothermal District Heating Systems in the United States, 2019

L. J. P.Muffler , Assessment of geothermal resources of the United States , 1978, 1979

A.Eberle , G. A.Heath , A. C.Carpenter Petri and S. R.Nicholson , Systematic Review of Life Cycle Greenhouse Gas Emissions from Geothermal Electricity , National Renewable Energy Lab.(NREL) , Golden , Colorao (United States) , 2017

W. E.Glassley , Geothermal energy: renewable energy and the environment , CRC Press , 2014

Buijze, 2020, Neth. J. Geosci., 98, e13

Majer, 2007, Geothermics, 36, 185, 10.1016/j.geothermics.2007.03.003

E.Majer , J.Nelson , A.Robertson-Tait , J.Savy and I.Wong , Protocol for addressing induced seismicity associated with enhanced geothermal systems , 2012

K.Young , A.Levine , J.Cook , D.Heimiller and J.Ho GeoVision Analysis Supporting Task Force Report: Barriers—An Analysis of Non-Technical Barriers to Geothermal Deployment and Potential Improvement Scenarios, 2019. Available from: https://www.nrel.gov/docs/fy19osti/71641.pdf

D.Millstein , J.McCall , J.Macknick , S.Nicholson , D.Keyser and S.Jeong , et al. GeoVision Analysis Supporting Task Force Report: Impacts. The Employment Opportunities, Water Impacts, Emission Reductions, and Air Quality Improvements of Achieving High Penetrations of Geothermal Power in the United States, 2019

McDonald, 2009, PLoS One, 4, e6802, 10.1371/journal.pone.0006802

E.Gunnlaugsson , H.Frimannson and G. A.Sverrisson , District heating in Reykjavik–70 years experience . Proceedings , World Geothermal Congress , Kyushu – Tohoku, Japan , 2000 , pp. 2087–2092

Lukawski, 2014, J. Pet. Sci. Eng., 118

Tunzi, 2016, Energy, 113, 413, 10.1016/j.energy.2016.07.033

S.Beyers and O.Racle , SuperCOPs: Hybrid Geothermal Heat Pump Systems for Exceptional Economics, Environmental Performance, and Operational Control , Proceedings, World Geothermal Congress , 2020 , 2020

Lukawski, 2017, Sustainable Energy Fuels, 1, 1098, 10.1039/C6SE00064A

EIA – U.S. Energy Information Administration. Electric Power Annual, 2019; Available from: https://www.eia.gov/electricity/annual/

R.DiPippo , Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact , Butterworth-Heinemann , 3rd edn, 2012

S.Zarandi , M. M.Sahar and G.Ivarsson , A Review on Waste Water Disposal at the Nesjavellir Geothermal Power Plant , 2010

M. Z.Lukawski , K.Vilaetis , L.Gkogka , K. F.Beckers , B. J.Anderson and J. W.Tester , A proposed hybrid geothermal-natural gas-biomass energy system for Cornell University. Technical and economic assessment of retrofitting a low-temperature geothermal district heating system and heat cascading solutions . Proceedings, 38th Workshop on Geothermal Reservoir Engineering . Stanford University , Stanford, California (United States) , 2013

G.Huttrer , Geothermal Power Generation in the World 2015–2020 Update Report . Proceedings , World Geothermal Congress. Reykavik , Iceland , 2020

D. M.Snyder , K. F.Beckers and K. R.Young , Update on Geothermal Direct-Use Installations in the United States . Proc 42nd Work Geotherm reervoir Eng Stanford Univ Stanford , California, US , 2017

EGEC – European Geothermal Energy Council, 2020 EGEC Geothermal Market Report, 2021. Available from: https://www.egec.org/media-publications/egec-geothermal-market-report-2020/

Beckers, 2021, Energy Convers. Manage., 243, 114335, 10.1016/j.enconman.2021.114335

Hamm, 2016, Geothermics, 64, 300, 10.1016/j.geothermics.2016.06.008

M.Sander , Geothermal district heating systems: Country case studies from China, Germany, Iceland, and United States of america, and schemes to overcome the gaps, In: Transactions – Geothermal Resources Council, 2016

J.Weber , H.Born and I.Moeck , Geothermal Energy Use, Country Update for Germany 2016–2018. In: Proceedings, European Geothermal Congress. Den Haag, The Netherlands, 2019

J. W.Lund and A. N.Toth , Direct Utilization of Geothermal Energy 2020 Worldwide Review, In: Proceedings of the World Geothermal Congress 2020, Reykavik, Iceland, 2020. Available from: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01018.pdf

Reber, 2014, Energy Policy, 70, 30, 10.1016/j.enpol.2014.03.004

IFC – International Finance Corporation. Success of Geothermal Wells: A Global Study, 2013. Available from: https://www.ifc.org/wps/wcm/connect/22970ec7-d846-47c3-a9f5-e4a65873bd3b/ifc-drilling-success-report-final.pdf

EPA – U.S. Environmental Protection Agency. Energy Star – Geothermal Heat Pumps, 2020; Available from: https://www.energystar.gov/products/energy_star_most_efficient_2020/geothermal_heat_pumps

Ito, 2017, Geothermics, 70, 393, 10.1016/j.geothermics.2016.11.004

Siler, 2017, Geothermics, 69, 15, 10.1016/j.geothermics.2017.04.003

Zheng, 2018, Appl. Geophys., 15, 125, 10.1007/s11770-018-0662-0

Gee, 2021, Geothermics, 94, 102094, 10.1016/j.geothermics.2021.102094

Hawkins, 2020, Water Resour. Res., 56, e2020WR027065, 10.1029/2020WR027065

Oh, 2012, Lab Chip., 12, 515, 10.1039/C2LC20799K

H. S.Carslaw and J. C.Jaeger , Conduction of heat in solids , Oxford University Press , London , 2nd edn, 1959 , p. 407

Grigsby, 1989, Geothermics, 18, 629, 10.1016/0375-6505(89)90098-9

Gringarten, 1978, Pure Appl. Geophys., 117, 297, 10.1007/BF00879755

Murphy, 1981, J. Geophys. Res., 86, 7145, 10.1029/JB086iB08p07145

Tester, 1982, Soc. Pet. Eng. J., 537, 10.2118/8270-PA

Suzuki, 2019, Geosci., 9, 425, 10.3390/geosciences9100425

Zaal, 2021, Geotherm. Energy, 9, 1, 10.1186/s40517-021-00193-0

Daniilidis, 2021, Geothermics, 91, 102041, 10.1016/j.geothermics.2021.102041

Kamila, 2021, Geothermics, 89, 101970, 10.1016/j.geothermics.2020.101970

Hager, 2021, Nature, 595, 684, 10.1038/s41586-021-03668-z

Im, 2021, Nature, 595, 70, 10.1038/s41586-021-03601-4

Allahvirdizadeh, 2020, J. Clean. Prod., 275

Wang, 2017, Adv. Eng. Res., 86, 302

Mohamed, 2021, Geothermics, 93, 102066, 10.1016/j.geothermics.2021.102066

I.Beentjes , Dissolution and thermal spallation of Barre granite using pure and chemically enhanced hydrothermal jets , 2018

S. D.Hillson and J. W.Tester , Heat transfer properties and dissolution behavior of barre granite as applied to hydrothermal jet drilling with chemical enhancement , 40th Workshop on Geothermal Reservoir Engineering , Stanford University , Stanford, California , 2015

Wilkinson, 1993, Rock. Mech. Rock. Eng., 26, 29, 10.1007/BF01019868

Beentjes, 2020, Rock Mech. Rock Eng., 53, 483, 10.1007/s00603-019-01912-7

Jamali, 2019, Geomech. Energy Environ., 20, 100112, 10.1016/j.gete.2019.01.001

Rui, 2021, Int. J. Rock. Mech. Min. Sci., 139, 104653, 10.1016/j.ijrmms.2021.104653

Beentjes, 2019, Rock. Mech. Rock. Eng., 52, 1339, 10.1007/s00603-018-1647-2

R. M.Potter , F. M.Potter and T. W.Wideman , Laboratory study and field demonstration of hydrothermal spallation drilling , In: Transactions – Geothermal Resources Council, 2010

Song, 2017, Geothermics, 70, 314, 10.1016/j.geothermics.2017.07.004

T.Lowry , J.Finger , C.Carrigan , A.Foris , M.Kennedy and T.Corbet , et al. , GeoVision Analysis Supporting Task Force Report , Reservoir Maintenance and Development, Albuquerque, New Mexico, United States , 2017

Khan, 2015, Lasers. Eng., 30, 137

S. M.Ezzedine , A.Rubenchik and R.Yamamoto , Laser-enhanced drilling and laser assisted fracturing for subsurface EGS applications . 40th Workshop on Geothermal Reservoir Engineering . Stanford University , Stanford, California , 2015

Zhang, 2016, Sci. Rep., 6, 1, 10.1038/s41598-016-0001-8

Chrysikopoulos, 1993, Environ. Geol., 22, 60, 10.1007/BF00775286

K. A.Kwakma , Tracer measurements during long-term circulation of the Rosemanowes HDR geothermal system. Proceedings of 13th Workshop on Geothermal Reservoir Engineering , Stanford University , Stanford, California , 1988

Rose, 2001, Geothermics, 30, 617, 10.1016/S0375-6505(01)00024-4

Sanjuan, 2006, Geothermics, 35, 622, 10.1016/j.geothermics.2006.09.007

Shook, 2001, Geothermics, 30, 573, 10.1016/S0375-6505(01)00015-3

Adams, 1991, Geothermics, 20, 53, 10.1016/0375-6505(91)90005-G

Cao, 2018, Geothermics, 72, 301, 10.1016/j.geothermics.2017.12.006

K.Leecaster , B.Ayling , G.Moffitt and P.Rose , Use of safranin T as a reactive tracer for geothermal reservoir characterization . Proceedings, 37th Workshop on Geothermal Reservoir Engineering . Stanford University , Stanford, California , 2012

Nottebohm, 2012, Geothermics, 43, 37, 10.1016/j.geothermics.2012.02.002

Robinson, 1988, SPE Form Eval., 3, 227, 10.2118/13147-PA

Schaffer, 2016, Geothermics, 64, 180, 10.1016/j.geothermics.2016.05.004

Ames, 2015, Math. Geosci., 47, 51, 10.1007/s11004-013-9506-x

Hawkins, 2018, Water Resour. Res., 54, 5341, 10.1029/2017WR021910

Schaffer, 2013, Int. J. Greenh. Gas Control., 14, 200, 10.1016/j.ijggc.2013.01.020

Dean, 2015, Geothermics, 53, 213, 10.1016/j.geothermics.2014.05.011

O. J.Vetter and H. B.Crichlow , Injection, injectivity and injectability in geothermal operations: problems and possible solutions. Phase I. Definition of the problems , 1979

Reimus, 2020, Geothermics, 83, 101712, 10.1016/j.geothermics.2019.101712

Hawkins, 2021, Geothermics, 92, 102046, 10.1016/j.geothermics.2021.102046

Cao, 2020, Water, 12, 653, 10.3390/w12030653

Kong, 2018, Environ. Sci. Technol., 52, 13681, 10.1021/acs.est.8b04367

Hawkins, 2017, Water Resour. Res., 53, 1210, 10.1002/2016WR019617

Wu, 2021, J. Hydrol., 593, 125888, 10.1016/j.jhydrol.2020.125888

G.Neupane , E. D.Mattson , M. A.Plummer , R. K.Podgorney and EGS Collab Team , Results of multiple tracer injections into fractures in the EGS Collab Testbed-1 , Proceedings of 45th Workshop on Geothermal Reservoir Engineering , Stanford University , Stanford, California , 2020

Alaskar, 2017, J. Pet. Sci. Eng., 159, 443, 10.1016/j.petrol.2017.09.048

H.Alqahtani , M. K.Hussain , H. A. L.Shateeb and E.Ellis , Characterization of ADOTS carbogenic nanoparticle tracers before and after reservoir injection . In: Proceedings – SPE Annual Technical Conference and Exhibition, 2018

D.Kosynkin and M.Alaskar , Oil industry first interwell trial of reservoir nanoagent tracers, In: Proceedings, SPE annual technical conference and exhibition, Dubai, United Arab Emirates, 2016

Sinclair, 2020, Carbon, 169, 395, 10.1016/j.carbon.2020.07.024

Zhang, 2015, Sci. Rep., 5, 1

Zhang, 2021, Water Resour. Res., 57, 2020WR028382, 10.1029/2020WR028382

Champ, 1988, Water Sci. Technol., 20, 81, 10.2166/wst.1988.0269

Zhang, 2020, Water Resour. Res., 56, e2019WR025916, 10.1029/2019WR025916

Matsumoto, 2018, Nat. Commun., 9, 1, 10.1038/s41467-018-04810-8

Yao, 2015, Ind. Eng. Chem. Res., 54, 10925, 10.1021/acs.iecr.5b02717

Alaskar, 2015, J. Pet. Sci. Eng., 127, 212, 10.1016/j.petrol.2015.01.021

Rudolph, 2020, Sci. Rep., 10, 1, 10.1038/s41598-019-56847-4

J.Ma , P.Zhang , S.Tian , M.Sheng , Q.Xu and Z.Lu , Carbon dots as fluorescent sensitive tracers in reservoir engineering , In: ARMA-CUPB Geothermal International Conference 2019, 2020

Angayarkanni, 2013, J. Nanofluids, 3, 17, 10.1166/jon.2014.1083

M.Ames , P.Brodrick and R.Horne , A framework for comparative inverse modeling of tracers for thermal breakthrough forecasting using fracture network models , Proceedings of Fourtieth Workshop on Geothermal Reservoir Engineering, 2014

Suzuki, 2020, Rock Mech. Rock Eng., 53, 4357, 10.1007/s00603-020-02081-8

T.Johnson , C.Strickland , H.Knox , J.Thomle , V.Vermuel and C.Ulrich , et al. , EGS Collab project electrical resistivity tomography characterization and monitoring status, Proceedings, 44th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 2019

Allis, 1986, Geophysics, 51, 1647, 10.1190/1.1442214

Hunt, 1970, Bull. Geol. Soc. Am., 81, 529, 10.1130/0016-7606(1970)81[529:GCAWGF]2.0.CO;2

Hunt, 2009, Geothermics, 38, 108, 10.1016/j.geothermics.2008.12.003

Peng, 2019, Geotherm Energy, 7, 1, 10.1186/s40517-019-0130-y

Liu, 2018, J. Geophys. Res. Solid Earth, 123, 3645, 10.1029/2017JB015223

M.Holma and P.Kuusiniemi , Cosmic-ray based geothermal exploration–A short introduction to muography, In: Eleventh Symposium On Structure, Composition And Evolution Of The Lithosphere, 2021, p. 35

Soengkono, 2013, Explor. Geophys., 44, 215, 10.1071/EG13036

Hermans, 2014, Energies, 7, 5083, 10.3390/en7085083

Domra Kana, 2015, Renewable Sustainable Energy Rev., 44, 87, 10.1016/j.rser.2014.12.026

Shah, 2015, Int. J. Adv. Res. Innov. Ideas Educ., 1, 55

Wright, 1985, Geophysics, 50, 2666, 10.1190/1.1441889

Hawkins, 2017, Geothermics, 67, 86, 10.1016/j.geothermics.2017.01.006

Patterson, 2017, Lead Edge, 36, 1024a1, 10.1190/tle36121024a1.1

Somma, 2019, Sensors, 19, 1009, 10.3390/s19051009

T.Reinsch , J.Henninges , J.Götz , P.Jousset , D.Bruhn and S.Lüth , Distributed Acoustic Sensing Technology for Seismic Exploration in Magmatic Geotherm al Areas, In: World Geothermal Congress 2015, Melbourne, Australia, (April 19–25), 2015, 2015

Becker, 2020, Water Resour. Res., 56, e2020WR028140, 10.1029/2020WR028140

Lellouch, 2020, Seismol. Res. Lett., 91, 3256, 10.1785/0220200149

B.Chi , L.Huang , K.Gao , J.Ajo-Franklin , T. J.Kneafsey and EGS Collab Team , Anisotropic Imaging of Created Fractures in EGS Collab , Experiments Using CASSM Data, 45th Workshop on Geothermal Reservoir Engineering, 2020, p. 6

M.Schoenball , J.Ajo-Franklin , D.Blankenship , P.Cook , P.Dobson and Y.Guglielmi , et al. , Microseismic monitoring of meso-scale stimulations for the DOE EGS Collab project at the Sanford Underground Research Facility. In: Proceedings of 44th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 11–13, 2019, 2019

G.Zyvoloski , FEHM: A control volume finite element code for simulating subsurface multi-phase multi-fluid heat and mass transfer, 2007;(LAUR-07-3359)

Sanyal, 2000, World Geotherm. Congr.

M. D.White , R.Podgorney , S. M.Kelkar , M. W.McClure , G.Danko and A.Ghassemi , et al. , Benchmark problems of the geothermal technologies office code comparison study , 2016

G. A.Zyvoloski , B. A.Robinson , Z. V.Dash and L. L.Trease , Summary of the models and methods for the FEHM application – A finite-element heat- and mass-transfer code , 1997; (LA-13307-MS)

Pandey, 2017, Sci. Rep., 7, 1, 10.1038/s41598-016-0028-x

R.Podgorney , H.Huang and D.Gaston , A fully-coupled, implicit, finite element model for simultaneously solving multiphase fluid flow, heat transport, and rock deformation . In: Transactions – Geothermal Resources Council, 2010

Xia, 2017, Renewable Energy, 105, 232, 10.1016/j.renene.2016.12.064

C. R.Augustine , J. L.Ho and N. J.Blair , GeoVision Analysis Supporting Task Force Report: Electric Sector Potential to Penetration , 2019

GeoDH. GeoDH Case Studies, 2014; Available from: http://geodh.eu/database/

A.Ragnarsson Overview of direct geothermal applications and uses worldwide. In: III GGDP Roundtable. Reykavik, Iceland: 2016. Available from: https://www.esmap.org/sites/esmap.org/files/DocumentLibrary/1Overview of direct geothermal applications Árni R.pdf

T. J.Reber , Evaluating Opportunities for Enhanced Geothermal System-Based District Heating , New York and Pennsylvania , 2013

EIA – U.S. Energy Information Administration. U.S. Residential natural gas price by State, 2020; Available from: https://www.eia.gov/dnav/ng/ng_pri_sum_a_EPG0_PRS_DMcf_a.htm

EuroStat. Natural gas prices for household consumers, second half of 2019, 2020; Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php/Natural_gas_price_statistics

A.Steiner , K. K.Yumkella , J.Clos and G. V.Begin , District Energy in Cities: Unlocking the Potential of Energy Efficiency and Renewable Energy . Nairobi, Kenya , 2015

Beckers, 2014, J. Renewable Sustainable Energy, 6, 013141, 10.1063/1.4865575

Beckers, 2019, Geotherm Energy, 7, 1, 10.1186/s40517-019-0119-6

J. W.Tester , T.Jordan , S.Beyers , O.Gustafson and J.Smith , Earth Source Heat: A Cascaded Systems Approach to DDU of Geothermal Energy on the Cornell CampusFinal Project Report 2019. Available from: https://gdr.openei.org/files/1180/DE-EE0008103 Final Report 11.14.2019.pdf

N.Garapati and J.Hause , Feasibility of Deep Direct-Use Geothermal on the West Virginia University Campus-Morgantown, WV. DOE EERE – Geothermal Technologies Program Final Technical Report; 2020

Y. F.Lin , A.Stumpf , S.Frailey , R.Okwen , Y.Lu and F.Holcomb , et al. Geothermal Heat Recovery Complex: Large-Scale, Deep Direct-Use System in a Low-Temperature Sedimentary Basin, 2020

T. S.Lowry , B.Ayling , N.Hinz , A.Sabin , R.Arguello and K.Blake , et al. , Deep Direct-Use Geothermal Feasibility Study for Hawthorne , NV , 2020

C. S.Turchi , J. D. P.McTigue , S.Akar , K. J.Beckers , M.Richards and C.Chickering , et al. Geothermal Deep Direct Use for Turbine Inlet Cooling in East Texas, 2020. Available from: https://www.nrel.gov/docs/fy20o-sti/74990.pdf

J.Bershaw , An Integrated Feasibility Study of Reservoir Thermal Energy Storage (RTES) in Portland , OR, USA , 2020

EGEC – European Geothermal Energy Council. Financing Geothermal Energy. EGEC policy paper; 2013. Available from: https://www.egec.org/wp-content/uploads/2017/05/EGEC-policy-paper-on-financing-geothermal-Fin.pdf

GeoDH. Developing geothermal district heating in Europe, 2014. Available from: http://geodh.eu/wp-content/uploads/2015/02/D.6.3-Final-Publishable-Report-Office-Print.pdf

P.Dumas , T.Garabetian , T.Le Guénan , B.Kkepińska , A.Kasztelewicz and S.Karytsas , et al. Risk Mitigation and Insurance Schemes Adapted to Geothermal Market Maturity: The Right Scheme for my Market. In: European Geothermal Congress 2019. Den Haag, the Netherlands: 2019. Available from: http://europeangeothermalcongress.eu/wp-content/uploads/2019/07/244.pdf

Boissavy C. Report reviewing existing insurance schemes for geothermal, GEORISK, 2020; Available from: https://www.georisk-project.eu/wp-content/uploads/2020/02/D3.1_Report-reviewing-geothermal-risk-mitigation-schemes-v2.pdf