The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring
Tóm tắt
Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential ‘treatments’ that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair.
Tài liệu tham khảo
World Health Organization http://www.who.int/mediacentre/factsheets/fs365/en/ Accessed 5th Jan 2016
American Burn Association. http://ameriburn.org/resources_factsheet.php accessed 9th Jul 2015
WHO http://www.who.int/violence_injury_prevention/other_injury/burns/en/ Accessed 9th Jul 2015
Sheridan RL. Burn care: results of technical and organizational progress. JAMA. 2003;290:719–22.
Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.
Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic Scarring and Keloids: Pathomechanisms and Current and Emerging Treatment Strategies. Mol Med. 2011;17(1–2):113–25.
Deitch EA, Wheelahan TM, Rose MP, Clothier J, Cotter J. Hypertrophic burn scars: analysis of variables. J Trauma. 1983;23:895–8.
McDonald WS, Deitch EA. Hypertrophic skin grafts in burned patients: a prospective analysis of variables. J Trauma. 1987;27:147–50.
Spurr ED, Shakespeare PG. Incidence of hypertrophic scarring in burn-injured children. Burns. 1990;16:179–81.
Dedovic Z, Koupilova I, Brychta P. Time trends in incidence of hypertrophic scarring in children treated for burns. Acta Chir Plast. 1999;41(3):87–90.
Bombaro KM, Engrav LH, Carrougher GJ, Wiechman SA, Faucher L, Costa BA, et al. What is the prevalence of hypertrophic scarring following burns? Burns. 2003;9:299–302.
Gangemi EN, Gregori D, Berchialla P, Zingarelli E, Cairo M, Bollero D, et al. Epidemiology and the risk factors for pathological scarring after burn wounds. Arch Facial Plast Surg. 2008;10:93–102.
Schneider JC, Holvanahalli R, Helm P, Goldstein R, Kowalske K. Contractures in burn injury; defining the problem. J Burn Care Res. 2006;27:508–14.
Tredget EE. Pathophysiology and treatment of fibroproliferative disorders following thermal injury. Ann N Y Acad Sci. 1999;888:165–82.
Ali SS, Hajrah NH, Ayuob NN, Moshref SS, Abuzinadah OA. Morphological and morphometric study of cultured fibroblast from treated and untreated abnormal scar. Saudi Med J. 2010;30:874–81.
Schmid P, Itin P, Bi C, Cox DA. Enhanced expression of transforming growth factor- beta type I and type II receptors in wound granulation tissue and hypertrophic scar. Am J Pathol. 1998;15(2):485–93.
Wang R, Ghahary A, Shen Q, Scott PG, Roy K, Tredget EE. Hypertrophic scar tissues and fibroblasts produce more transforming growth factor- beta 1 mRNA and protein than normal skin and cells. Wound Repair and Regen. 2000;8:128–37.
Xie JL, Qi SH, Pan S, Xu YB, Li TZ, Liu XS, et al. Expression of Smad proteins by normal skin fibroblasts and hypertrophic scar fibroblasts in response to transforming growth factor beta 1. Dermatol Surg. 2008;34:1216–24.
Kopp J, Preis E, Said H, Hafemann B, Wickert L, Gressner AM, et al. Abrogation of transforming growth factor-B signalling by SMAD 7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem. 2006;22(3):21570–6.
Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol. 1999;1(5):260–6.
Sumiyoshi K, Nakao A, Setoguchi Y, Okumura K, Ogawa H. Exogenous Smad3 accelerates wound healing in a rabbit derma ulcer model. J Invest Dermatol. 2004;123:229–36.
Setoguchi Y, Jaffe HA, Danel C, Cystal RG. Ex vivo and in vivo gene transfer to the skin using replication-deficient recombinant adenovirus vectors. J Invest Dermatol. 1994;102:415–21.
Scott PG, Dodd CM, Tredget EE, Ghahary A, Rahemtulla F. Chemical characterisation and quantification of proteoglycans in human post burn hypertrophic and mature scars. Clin Sci (London). 1996;90:417–25.
Zhang Z, Garron TM, Li XJ, Liu Y, Zhang X, Li YY, et al. Recombinant human decorin inhibits TGF-beta 1 induced contraction of collagen lattice by hypertrophic scar fibroblasts. Burns. 2009;35(4):527–37.
Linge C, Richardson J, Vigor C, Clayton E, Hardas B, Rolfe K. Hypertrophic scars cells fail to undergo a form of apoptosis specific to contractile collagen- the role of transglutaminase. J Invest Dermatol. 2005;12:72–82.
Hinz B, Gabbiani G. Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thromb Haemost. 2003;90(6):993–1002.
Moulin V, Larochelle S, Langlois C, Thibault I, Lopez-Valle CA, Roy M. Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic inductors. J Cell Physiol. 2004;198(3):350–8.
Yang L, Scott PG, Giuffre J, Shankowsky HA, Ghahary A, Tredget EE. Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest. 2002;82:1183–92.
Yang L, Scott PG, Dodd C, Medina A, Jiao H, Shankowsky HA, et al. Identification of fibrocytes in post burn hypertrophic scar. Wound Repair Regen. 2005;13(4):398–404.
Wang J, Jiao H, Stewart TL, Shankowsky HA, Scott PG, Tredget EE. Increased TGF-beta-producing CD41 T lymphocytes in post burn patients and their potential interaction with dermal fibro-blasts in hypertrophic scarring. Wound Repair Regen. 2007;15(4):530–9.
Eto H, Suga H, Aoi N, Kato H, Doi K, Kuno S, et al. Therapeutic potential of fibroblast growth factor-2 for hypertrophic scars: up regulation of MMP-1 and HGF expression. Lab Invest. 2012;92:214–23.
Neely AN, Clendening CE, Gardner J, Greenhalgh DG, Warden GD. Gelatinase activity in keloids and hypertrophic scars. Wound Repair Regen. 1999;7(3):166–71.
Mauviel A. Cytokine regulation of metalloproteinase gene expression. J Cell Biochem. 1993;53:288–95.
Zhang Y, McCluskey K, Fuji K, Wahl LM. Differential regulation of metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte –macrophage CSF and IL-1 beta through prostaglandin dependent and independent mechanisms. J Immunol. 1998;161:3071–6.
Tredget EE, Yang L, Delehanty M, Shankowsky H, Scott PG. Polarized T helper cells Th2 cytokine production in patients with hypertrophic scar following thermal injury. J Interferon Cytokine Res. 2005;26:179–89.
Wang J, Hori K, Ding J, Huang Y, Kwan P, Ladak A, et al. Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring. J Cell Physiol. 2011;226(5):1265–73.
Liuzzi F, Chadwick S, Shah M. Paediatric post-burn scar management in the UK: A national survey. Burns. 2015;41(2):252–6.
Sidgwick GP, McGeorge D, Bayat A. A comprehensive evidence-based review on the role of topical and dressings in the management of skin scarring. Arch Dermatol Res. 2015;307:461–77.
Stewart TL, Ball B, Schembri PJ, Hori K, Ding J, Shankowsky HA, et al. The use of laser Doppler imaging as a predictor of burn depth and hypertrophic scar post burn injury. J Burn Care. 2012;33(6):764–71.
Kwan PO, Ding J, Tredget EE. Serum decorin, IL-1β and TGF-β predict hypertrophic scarring post burn. J Burn care Res. In press.
Anzarut A, Olson J, Singh P, Rowe BH, Tredget EE. The effectiveness of pressure garment therapy for the prevention of abnormal scarring after burn injury: a meta-analysis. J Plast Reconstr Aesthet Surg. 2009;62(1):77–84.
Engrav LH, Heimbach DM, Rivara FP, Moore ML, Wang J, Carrougher GJ, et al. 12-year within-wound study of the effectiveness of custom pressure garment therapy. Burns. 2010;36(7):975–83.
Ranò F, Grazianetti P, Stella M, Magliacani G, Pezzulto C, Cannas M. Release and activation of matrix metalloproteinase −9 during in vitro mechanical compression in hypertrophic scars. Arch Dermatol. 2002;138(4):475–8.
Costa AM, Peyrol S, Pôrto LC, Comparin JP, Foyatier JL, Desmoulière A. Mechanical forces induce scar remodelling. Study in non-pressure-treated versus pressure-treated hypertrophic scars. Am J Pathol. 1999;155(5):1671–9.
Johnson J, Greenspan B, Gorga D, Nagler W, Goodwin C. Compliance with pressure garment use in burn rehabilitation. J Burn Care Rehab. 1994;15(2):180–8.
Macintyre L, Baird M. Pressure garments for use in the treatment of hypertrophic scars- a review of the problems associated with their use. Burns. 2006;32(1):10–5.
O’Brien L, Jones DJ. Silicone gel sheeting for preventing and treating hypertrophic and keloid scars. Cochrane Database Syst Rev. 2013;9:CD003826.
So K, Umraw N, Scott J, Campbell K, Musgrave M, Cartotto R. Effects of enhanced patient education on compliance with silicone gel sheeting and burn scar outcome: a randomised prospective study. J Burn Care Rehabi. 2003;24(6):411–7.
Choi J, Lee EH, Park SW, Chang H. Regulation of Transforming growth factor β1, platelet-derived growth factor, and basic fibroblast growth factor by silicone gel sheeting in early-stage scarring. Arch Plast Surg. 2015;42(1):20–7.
Gauglitz GG. Management of keloids and hypertrophic scars: current and emerging options. Clin Cosment Investig Dermatol. 2013;6:103–14.
Roques C, Téot L. The use of corticosteroids to treat keloids.: A review. Int J of Low Extrem Wounds. 2008;7(3):137–45.
Manuskiatti W, Fitzpatrixk RE. Treatment response of keloidal and hypertrophic sternotomy scars: comparison among intralesional corticosteroid, 5-fluorouracil, and 585 nm flashlamp-pumped pulse dye laser treatments. Arch Dermatol. 2002;138(9):1149–55.
Tredget EE, Levi B, Donelan MB. Biology and principles of scar management and burn reconstruction. Surg Clin North Am. 2014;94(4):793–815.
Rabello FB, Souza CD, Júnior JAF. Update on hypertrophic scar treatment. Clinics. 2014;69(8):565–573.55.
Ye Q, Wang S-J, Chen J-Y, Rahman K, Hai-Liang X, Zhang H. Medicinal plants for the treatment of hypertrophic scars. Evid Based Complement Alternat Med. 2015;2015:101340.
Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22:19–34.
Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods Enzymol. 1990;186:343–55.
Lamson DW, Brignall MS. Antioxidants and cancer, part 3: Quercetin. Altern Med Rev. 2000;5:196–208.
Prior RL. Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr. 2003;78:570–8S.
Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 2004;36(7):838–49.
Barnes S, Prasain J, D’Alessandro T, Arabshahi A, Botting N, Lila MA, et al. The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Function. 2011;2(5):235.
Phan TT, Lim IJ, Chan SY, Tan EK, Lee ST, Longaker MT. Suppression of transforming growth factor beta/smad signalling in keloid derived fibroblasts by querectin; implications for the treatment of excessive scars. J Trauma. 2004;57(5):1032–7.
Phan TT, Sun L, Tran E, Nguyen TT, Chan SY, Lee ST, et al. Suppression of insulin like growth factor signalling pathway and collagen expression in keloid derived fibroblasts by quercetin: its therapeutic potential use in the treatment and/or prevention of keloids. Br J Dermatol. 2003;148(3):544–52.
Long X, Zeng X, Zhang FQ. Influence of quercetin and xray on collagen synthesis of cultured human keloid fibroblasts. Chin Med Sci J. 2006;21(3):179–83.
Phan TT, Sun L, Bay BH, Chan SY, Lee ST. Dietary compounds inhibit proliferation and contraction of keloid and hypertrophic scar derived fibroblasts in vitro: therapeutic implications for excessive scarring. J Trauma. 2003;54(6):1212–24.
Saulis AS, Mogford JH, Mustoe TA. Effect of Mederma on hypertrophic scarring in the rabbit ear model. Plast Recontr Surg. 2002;110(1):177–83.
Augusti T. Therapeutic values of onion (Allium cepa L.) and garlic (Allium sativum L.). Indian J Exp Biol. 1996;34(7):634–40.
Cho J-W, Cho S-Y, Lee S-R, Lee K-S. Onion extract and quercetin induce matrix metalloproteinase −1 in vitro and in vivo. Int J Mol Med. 2010;25:347–52.
Chanprapaph K, Tanrattanakorn S, Wattanakrai P, et al. Effectiveness of onion extract gel on surgical scars in Asians. Dermatol Res Pract. 2012;2012:212945.
Ho WS, Ying SY, Chan PC, Chan HH. Use of onion extract, heparin, allantoin gel in prevention of scarring in Chinese patients having laser removal of tattoos: A prospective randomized controlled trial. Dermatol Surg. 2006;32(7):891–6.
Wananukul S, Chatpreodprai S, Peongsujarit D, Lertsapcharoen P. A prospective placebo-controlled study on the efficacy of onion extract in silicone derivative gel for the prevention of hypertrophic scar and keloid in median sternotomy wound in pediatric patients. J Med Assoc Thai. 2013;96(11):1428–33.
Jenwitheesuk K, Surakunprapha P, Jenwitheesuk K, Kuptamond C, Prathanee S, Intanoo W. Role of silicone derivative plus onion extract gel in presternal hypertrophic scar protection: a prospective randomized, double blinded, controlled trial. Int Wound J. 2012;9:397–402.
Beuth J, Hunzelmann N, van Leendert R, Basten R, Noehle M, Schenider B. Safety and Efficacy of Local Administration of Contractubex® to Hypertrophic Scars in Comparison to Corticosteroid Treatment. Results of a Multicenter, Comparative Epidemiological Cohort Study in Germany. In vivo. 2006;20:277–84.
George J, Singh M, Srivastava AK, Bhui K, Roy P, Chaturvedi PK, et al. Resveratrol and Black Tea Polyphenol Combination Synergistically Suppress Mouse Skin Tumors Growth by Inhibition of Activated MAPKs and p53. PLoS ONE. 2011;6:e23395.
Hiroto Y, Tadokoro K, Tsuda T, Nakazono E, Ohnaka K, Takayanagi R, et al. Resveratrol, a phytoestrogen found in red wine, down-regulates protein S expression in HepG2 cells. Thrombo Res. 2011;127:e1–7.
Olson ER, Naugle JE, Zhang X, Bomser JA, Meszaros JG. Inhibition of cardiac fibroblast proliferation and myofibroblast differentiation by resveratrol. Am J Physiol Heart Circ Physiol. 2005;288(3):1131–8.
Glehr M, Fritsch-Breisach M, Lohberger B, Walzer SM, Moazedi-Fuerst F, Rinner B, et al. Influence of resveratrol on rheumatoid fibroblast-like synoviocytes analysed with gene chip transcription. Phytomedicine. 2013;20(3–4):310–8.
Yao J, Wang JY, Liu L, Li YX, Xun AY, Zeng WS, et al. Anti-oxidant effects of resveratrol on mice with DSS-induced ulcerative colitis. Arch Med Res. 2010;41(4):288–94.
Zeng G, Zhong F, Luo JL, Zhang P. Resveratrol mediated reduction of collagen by inhibiting proliferation and producing apoptosis in human hypertrophic scar fibroblasts. Biosci Biotechnol Biochem. 2013;77(12):2389–96.
Sogutlu G, Karabulut AB, Ara C, Cinpolat O, Isik B, Piskin T, et al. The effect of resveratrol on surgery induced peritoneal adhesions in an experimental model. Cell Biochem Funct. 2007;25(2):217–20.
Ikeda K, Torigoe T, Matsumoto Y, Fujita T, Sato N, Yotsuyanag T. Resveratrol inhibits fibrogenesis and induces apoptosis in keloid fibroblasts. Wound Repair Regen. 2013;21:616–23.
Branford OA, Grobbelaar AO, Rolfe KJ. Epigallocatechin-3-gallate (EGCG), a constituent of green tea and its anti-fibrotic effect. In Tea Consumption and Health Nova. 153–166.
Suzuki Y, Hattori S, Isemura M. Epigallocatechin-3-O-gallate inhibits fibroblast contraction of floating collagen gel: Interaction between epigallocatechin-3-O-gallate and platelet derived growth factor. Biosci Biotechnol Biochem. 2004;68:1817–20.
Klass BR, Branford OA, Grobbelaar AO, Rolfe KJ. The effect of epigallocatechin-3-gallate, a constituent of green tea, on transforming growth factor-beta1-stimulated wound contraction. Wound Repair Regen. 2010;18(1):80–8.
Weber AA, Neuhaus T, Skach RA, Hatcheller J, Ahn HY, Schrör K, et al. Mechanisms of the inhibitory effects of epigalocatechin-3 gallate on platelet –derived growth factor-BB induced cell signalling and mitogenesis. FASEB J. 2004;18:128–30.
Cai Y, Yu SS, Chen TT, Gao S, Geng B, Yu Y, et al. EGCG inhibits CTGF expression via blocking NF- κB activation in cardiac fibroblast. Phytomedicine. 2013;20(2):106–13.
Wang CY, Deng YT, Huang SY, Liu CM, Chang HH, Wong MY. Epigallocatechin-3-gallate inhibits lysophosphatidic acid-stimulated connective tissue growth factor via JNK and Smad3 suppression in human gingival fibroblasts. J Formos Med Assoc. 2014;223(1):50–5.
Moyle CW, Cerezo AB, Winterborne MS, Hollands WJ, Alexeev Y, Needs PW, et al. Potent inhibition of VEGFR-2 activation by tight binding of green tea epigallocatechin gallate and apple procyanidins to VEGF: relevance to angiogenesis. Mol Nutr Food Res. 2015;59(3):401–12.
Kim H, Kawazoe T, Han DW, Matsumara K, Suzuki S, Tsutsumi S, et al. Enhanced wound healing by an epigallocatechin gallate incorporated collagen sponge in diabetic mice. Wound Repair Regen. 2008;16:714–20.
Goo HC, Hwang YS, Choi YR, Cho HN, Suh H. Development of collagenase-resistant collagen and its interaction with adult human dermal fibroblasts. Biomaterials. 2003;24:5099–113.
Yang EJ, Lee W, Ku SK, Song KS, Bae JS. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs. Food Chem Toxicol. 2012;50(5):1288–94.
Chakravarti B, Maurya R, Siddiqui JA, Bid HK, Rajendran SM, Yadav PP, et al. In vitro anti-breast cancer activity of ethanolic extract of Wrightiato mentosa: role of pro-apoptotic effects of oleanolic acid and urosolic acid. J Ethnopharmacol. 2012;142(1):72–9.
Wei Y, Yan XQ, Ma L, Wu JG, Zhang H, Qin LP. Oleanolic acid inhibits hypertrophic scarring in the rabbit ear model. Clin Exp Dermatol. 2011;36(5):528–33.
Zhang H, Zhang Y, Jiang YP, Zhang LK, Peng C, He K, et al. Curative effects of oleanolic acid on formed hypertrophic scars in the rabbit ear model. Evid Based Complement Alternat Med. 2012;2012:2012837581.
Atsumi T, Murakami Y, Shibuya K, Tonosaki K, Fujisawa S. Induction of cytotoxicity and apoptosis and inhibition of cyclooxygenase-2 gene expression, by curcumin and its analogue, alphadiisoeugenol. Anticancer Res. 2005;25:4029–36.
Chan WH, Wu HY, Chang WH. Dosage effects of curcumin on cell death types in a human osteoblast cell line. Food Chem Toxicol. 2006;44:1362–71.
Dujic J, Kippenberger S, Hoffmann S, Ramirez-Bosca A, Miguel J, Diaz-Alperi J, et al. Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light. J Invest Dermatol. 2007;127:1992–2000.
Panchatcharam M, Miriyala S, Gayathr VS, Suguna L. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem. 2006;290:87–96.
Scharstuhl A, Mutsaers HAM, Pennings SW, Szarek WA, Russel FG, Wagener FA. Curcumin-induced fibroblast apoptosis and in vitro wound contraction are regulated by antioxidants and heme oxygenase: implications for scar formation. J Cell Mol Med. 2009;13(4):712–25.
Wang R, Yin R, Zhou W, Xu D, Li S. Shikonin and its derivatives: a patent review. Expert Opin Ther Pat. 2012;22:977–97.
Wu Y, Fabritius MIC. Chemotherapeutic sensitization by endoplasmic reticulum stress: increasing the efficacy of taxane against prostate cancer. Cancer Biol Ther. 2009;8:146–52.
Yang JT, Li ZL, Wu JY, Lu FJ, Chen CH. An oxidative stress mechanism of shikonin in human glioma cells. PLoS One. 2014;9:e94180.
Chang IC, Huang YJ, Chiang CW, Yeh LS. Shikonin induces apoptosis through reactive oxygen species/extracellular signal- regulated kinase pathway in osteosarcoma cells. Biol Pharm Bull. 2010;33:816–24.
Hashimoto S, Xu M, Masuda T, Aiuchi S, Nakajo J, Cao M, et al. Beta-hydroxyisoovaleryishikonin inhibits the cell growth of various cancer cell lines and induces apoptosis in leukemia HL-60cells through a mechanism different from those of Fas and etoposide. J Biochem. 1999;125:17–23.
Gao D, Hiromura M, Yasui H, Sakurai H. Direct reaction between Shikonin and thiols induces apoptosis in HL60 cells. Biol Pharm. 2002;25:827–82.
Fan C, Xie Y, Dong Y, Su Y, Upton Z. Investigating the potential of Shikonin as a novel hypertrophic scar treatment. J Biomed Sci. 2015;22:70.
Xie Y, Fan C, Dong Y, Lynam E, Leavesley DI, Li K, et al. Functional and mechanistic investigation of Shikonin in scarring. Chemico-Bio Interact. 2015;228:18–27.
Fan C, Dong Y, Xie Y, Su Y, Zhang X, Leavesley D, et al. Shikonin reduces TGF-β1- induced collagen production and contraction in hypertrophic scar derived fibroblasts. Int J Mole Med. 2015;36:985–91.
Wang T, Zhong XG, Li YH, Zhang SJ, Gao YS, et al. Protective effect of emodin against airway inflammation in the ovlbumin-induced mouse model. Chin J Integr Med. 2015;21:431–7.
Zhu X, Zeng K, Qiu Y, Yan F, Lin C. Therapeutic effect of emodin on collagen-induced arthritis in mice. Inflammation. 2013;36:1253–9.
Sun YP, Liu JP. Blockade of emodin on amyloid-β 26-35-induced neurotoxicity in AβPP/PS1 mice and PC12 cells through activation of the class III phosphatidylinositol 3-kinase/Beclin-1/B cells lymphoma 2 pathway. Planta Med. 2015;81:108–15.
Shirmali D, Shanmugam MK, Kumar AP, Zhang J, Tan BK, Sethi G. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett. 2013;341:139–49.
Liu C. Inhibition of mechanical stress-induced hypertrophic scar inflammation by emodin. Molec Med Reports. 2015;11:4087–92.
Hu Q, Noor M, Wong YF, Hylands PJ, Simmonds MS, Xu Q, et al. In vitro anti fibrotic activities of herbal compounds and herbs. Nephrol Dial Transplant. 2009;24:3033–41.
Chen XH, Sun RS, Hu JM, Mo ZF, Yang ZF, Jin GY, et al. Inhibitory effect of emodin on bleomycin-induced pulmonary fibrosis in mice. Clin Exp Pharmacol Physiol. 2009;36:146–53.
Dong MX, Jia Y, Zhang YB, Li CC, Geng YT, Zhou L, et al. Emodin protects rat liver from CCI(4) – induced fibrogenesis via inhibition of hepatic stellate cells activation. World J Gastroenterol. 2009;15:4753–62.
Schepartz AI, Subers NH. Catalase in honey. J Apic Res. 1996;5:37–43.
Subrahmanyam M. Addition of antioxidant and polyethylene glycol 4000 enhances the healing property of honey in burns. Ann Burns Fire Disasters. 1996;9:93–5.
Brady NF, Molan PC, Harfoot CG. The sensitivity of dermatophytes to the antimicrobial activity of manuka honey and other honey. Pharm Sci. 1997;2:1–3.
Wahdan H. Causes of the antimicrobial activity of honey. Infection. 1998;26:26–31.
Lu J, Carter DA, Turnbull L, Rosendale D, Hedderley D, Stephens J, et al. The Effect of New Zealand Kanuka, Manuka and Clover Honeys on Bacterial Growth Dynamics; and Cellular Morphology Varies According to the Species. PLoS ONE. 2013;8:55898.
Rufian-Henares JA, Morales FJ. Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities. Food Res Int. 2007;40:995–1002.
Mavric E, Wittmann S, Barth G, Henle T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res. 2008;52:483–9.
Kwakman PHS, teVelde AA, de Boer L, Spejer D, Vandenbroucke-Grauls CM, Zaat SA. How honey kills bacteria. FASEB J. 2010;24:2576–82.
Subrahmanyam M, Hemmady A, Pawar SG. The sensitivity to honey of multidrug-resistant Pseudomonas Aeruginosa from infected burns. Ann Burns Fire Disasters. 2003;16:84–6.
Abuharfeil N, Al-Oran R, Abo-Shehada M. The effect of bee honey on the proliferative activity of human B- and T-lymphocytes and the activity of phagocytes. Food Agric Immunol. 1999;11:169–77.
Tonks A, Cooper RA, Price AJ, Molan PC, Jones KP. Stimulation of TNF-alpha release in monocytes by honey. Cytokine. 2001;14:240–2.
Tonks AJ, Cooper RA, Jones KP, Blair S, Parton J, Tanks A. Honey stimulates inflammatory cytokine production from monocytes. Cytokine. 2003;21:242–7.
Molan PC. The evidence supporting the use of honey as a wound dressing. Int J Low Extrem Wounds. 2006;5:40–54.
Nakajima Y, Nakano Y, Fuwano S, Hayahi N, Kinoshita A, Miyahara M, et al. Effects of three types of Japanese honey on full thickness wound in mice. Evid Based Complement Alternat Med. 2013;2013:504537.
Gupta SS, Singh O, Bhagel PS, Moses S, Shukla S, Mathur RK. Honey dressing versus silver sulfadiazine dressing for wound healing in burn patients: a retrospective study. J Cutan Surg. 2011;4(3):183–7.
Jull AB, Rodgers A, Walker N. Honey as a topical treatment for wounds. Cochrane Database Syst Rev. 2008;4:CD005083.
Wasiak J, Cleland H, Campbell F. Dressings for superficial and partial thickness burns. Cochrane Database Syst Rev. 2008;8(4):CD002106.
Storm-Versloot MN, Vos CG, Ubbink DT, Vermeulen H. Topical silver for preventing wound infection. Cochrane Database Syst Rev. 2010;17(3):CD006478.
Subrahmanyam M. Honey impregnated gauze versus polyurethane film (OpSiteR) in the treatment of burns – a prospective randomised study. Br J Plast Surg. 1993;46:322–3.
Subrahmanyam M. Honey impregnated gauze versus amniotic membrane in the treatment of burns. Burns. 1994;20:331–3.
Subrahmanyam M. A prospective randomised clinical and histopathological study of superficial burn wound healing with honey and silver sulfadiazine. Burns. 1998;24:157–61.
Liu J, Lu Y-F, Zhang Y, Wu KC, Fan F, Klaassen CD. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice. Toxicol Appl Pharmacol. 2013;272:10.1016.
Chin MP, Reisman SA, Bakris GL, O'Grady M, Linde PG, McCullough PA, et al. Mechanisms contributing to adverse cardiovascular events in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. Am J Nephrol. 2014;39:499–508.
Chow HH, Garland LL, Heckman-Stoddard BM, Hsu CH, Butler VD, et al. A pilot clinical study of resveratrol in postmenopausal women with high body mass index: effects on systemic sex steroid hormones. J Transl Med. 2014;12:223.
Lovera J, Ramos A, Devier D, Garrison V, Kovner B, Reza T, et al. Polyphenon E, non-futile at neuroprotection in multiple sclerosis but unpredictably hepatotoxic: Phase I single group and phase II randomized placebo-controlled studies. J Neurol Sci. 2015;358:46–52.
Pillukat MH, Bester C, Hensel A, Lechtenberg M, Petereit F, Beckebaum S, et al. Concentrated green tea extract induces severe acute hepatitis in a 63-year-old woman--a case report with pharmaceutical analysis. J Ethnopharmacol. 2014;155:165–70.
Vohra S, Cvijovic K, Boon H, Foster BC, Jaeger W, LeGatt D, et al. Study of natural health product reactions (SPNAR): Active surveillance of adverse events following the concurrent natural health product and prescription use in community pharmacies. PLoS One. 2012;7(9):e45196.
Bun SS, Ciccolini J, Bun H, Aubert C, Catalin J. Drug interactions of paclitaxel metabolism in human liver microsomes. J Chemother. 2003;15:266–74.
Sak K. Chemotherapy and dietary phytocemical agents. Chem Res Practice. 2012;2012:282570.
Shang W, Lu W, Han M, Qiao J. The interactions of anticancer agents with tea catechins: current evidence from preclinical studies. Anticancer Agents Med Chem. 2014;14:1343–50.
Wang CZ, Luo X, Zhang B, Song WX, Ni M, Mehendale S, et al. Notoginseng enhances anti-cancer effect of 5-fluorouracil on human colorectal cancer cells. Cancer Chemother Pharmacol. 2007;60:69–79.
Sen S, Sharma H, Singh N. Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun. 2005;331:1245–52.
Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomarkers Prev. 2007;16:1246–52.
Chen CY, Chen FA, Wu AB, Hsu HC, Kang JJ, Cheng HW. Effect of hydroxypropyl-β-cyclodextrin on the solubility, photo stability and in vitro permeability of alkannin/shikonin enantiomers. Int J Pharm. 1996;141:171–8.
Xia H, Tang C, Gui H, Wang X, Qi J, Wang X, et al. Preparation, cellular uptake and angiogenic suppression of shikonin-containing liposomes in vitro and in vivo. Biosci Rep. 2013;33:e00020.
Olthof MR, Hollman PCH, Vree TB, Katan MB. Bioavailabilities of quercetin-3-glucoside and quercetin-4’-glucoside do not differ in humans. J Nutr. 2000;130:1200–3.
Kiesewetter H, Koscielny J, Kalus U, Vix JM, Petrini O, van Toor BS, et al. Efficacy of orally administered extract of red vine leaf AS 195 (folia vitis viniferae) in chronic venous insufficiency (stages I-II). A randomized, double-blind, placebo-controlled trial. Arzneimittelforschung. 2000;50:109–17.
Erlund I, Kosonen T, Alfthan J, Mäenpää J, Pertunen K, Kenraali J, et al. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmaol. 2000;56:545–53.
Lombardi G, Vannini S, Blasi F, Marcotullio MC, Dominici L, Villarini M, et al. In Vitro Safety/Protection Assessment of Resveratrol and Pterostilbene in a Human Hepatoma Cell Line (HepG2). Nat Prod Commum. 2015;10:1403–8.
Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA, et al. A randomised double-blind, placebo controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85:1383–91.
van der Made SM, Plat J, Mensink RP. Resveratrol does not influence metabolic risk markers related to cardiovascular health in overweight and slightly obese subjects: a randomized, placebo-controlled crossover trial. PLoS One. 2015;10:e0118393.
Joe AK, Schnol-Sussman F, Bresailier RS, Abrams JA, Hibshoosh H, Cheung K, et al. Phase Ib Randomized, Double-Blinded, Placebo-Controlled, Dose Escalation Study of Polyphenon E in Patients with Barrett's Esophagus. Cancer Prev Res. 2015;8:1131–7.
Chen IJ, Liu CY, Chiu JP, Hsu CH. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin Nutr. 2015; in press
Chow HH, Cai Y, Hamkim IA, Crowell JA, Shahi F, Brooks CA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res. 2003;9:3312–9.
Zhao H, Zhu W, Jia L, Sun X, Chen G, Zhao X, et al. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br J Radiol. In press
Dostal AM, Samavat H, Bedell S, Trokelson C, Wang R, Swenson K, et al. The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: results of the Minnesota Green Tea Trial. Food Chem Toxicol. 2015;83:26–35.
Mdhluli MC, van der Horst G. The effect of oleanolic acid on sperm motion characteristics and fertility of male Wistar rats. Lab Anim. 2002;36:432–7.
Cheng AL, Hsu CH, Lin CH, et al. Phase I clinical trial of curcumin, a chemo preventative agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:2895–900.
Goeal A, Kunnumakkara AB, Aggarwal BB. Curcumin as ‘Curemin’: from kitchen to clinic. Biochem Pharmacol. 2008;75:787–809.
Jiao Y, Wilkinson J, Di X, Wang W, Hatcher H, Kock ND, et al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood. 2009;113:462–9.
Albreht A, Vovk I, Simonovska B. Addition of β-lactoglobulin produces water-soluble shikonin. J Agric Food Chem. 2012;60:10834–43.
Su L, Liu L, Wang Y, Yan G, Zhang Y. Long-term systemic toxicity of shikonin derivatives in Wistar rats. Pharm Biol. 2014;52:486–90.
Simon A, Traynor K, Santos K, Blaser G, Bode U, Molan P. Medical Honey for Wound Care—Still the ‘Latest Resort’? Evid Based Complement Alternat Med. 2009;6:165–73.
