The evaluation of hydrogen embrittlement threshold force using the Small punch test

Theoretical and Applied Fracture Mechanics - Tập 125 - Trang 103673 - 2023
Luiz Fernando Maia de Almeida1, Guilherme Antonelli Martiniano1, Rodrigo Freitas da Silva Alvarenga1, Marcelo Torres Piza Paes2, Francisco Francelino Ramos Neto2, Waldek Wladimir Bose Filho3, Rosenda Valdés Arencibia1, Sinésio Domingues Franco1
1Universidade Federal de Uberlândia, 2121, João Naves de Ávila Avenue, Campus Santa Mônica, 38400-902, Uberlândia, MG. Brazil
2Research and Development Center, Petrobras, Rio de Janeiro, Brazil
3Escola de Engenharia de São Carlos – USP. 400 Trabalhador São-Carlense Avenue. Parque Arnold Schimidt. 13566-590, São Carlos, SP. Brazil

Tài liệu tham khảo

Cabrini, 2011, Hydrogen embrittlement behavior of HSLA line pipe steel under cathodic protection, Corros. Rev., 29, 261, 10.1515/CORRREV.2011.009 Kim, 2005, Electrochemical study of hydrogen embrittlement and optimum cathodic protection potential of welded high strength steel, Met Mater Int., 11, 63, 10.1007/BF03027486 Ćwiek, 2007, Hydrogen degradation of high strength weldable steels, J. Achiev. Mater. Manuf. Eng., 20, 223 Parkins, 1982, Environment sensitive cracking of pre-stressing steels, Corros. Sci., 22, 379, 10.1016/0010-938X(82)90017-8 Ma, 2015, Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater, Mater. Sci. Eng. A., 642, 22, 10.1016/j.msea.2015.05.109 Barnoush, 2010, Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation, Acta Mater., 58, 5274, 10.1016/j.actamat.2010.05.057 Park, 2018, Effect of Prestrain on Hydrogen Embrittlement Susceptibility of EH 36 Steels Using In Situ Slow-Strain-Rate Testing, Met Mater. Int. L. Raymond, The susceptibility of fasteners to hydrogen embrittlement ans stress corrosion cracking., in: Handb Bolts Bolted Joints, ed. J.H. B, New York, 1998: pp. 723–756. Narimani, 2015, Predictions of corrosion current density and potential by using chemical composition and corrosion cell characteristics in microalloyed pipeline steels, Measurement., 62, 97, 10.1016/j.measurement.2014.11.011 Robertson, 2015, Hydrogen Embrittlement Understood, Metall Mater Trans B., 46, 1085, 10.1007/s11663-015-0325-y P. Gong, A. Turk, J. Nutter, F. Yu, B. Wynne, P. Rivera-Diaz-del-Castillo, W. Mark Rainforth, Hydrogen embrittlement mechanisms in advanced high strength steel, Acta Mater. 223 (2022) 117488. 10.1016/j.actamat.2021.117488. ASTM International, ASTM F1624-12:2018, Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique, 2018. 10.1520/F1624-12R18.2. Leal, 2022, Application of a nano-incremental step loading (N-ISL) in a Ni-base superalloy under a hydrogen charging environment, J. Brazilian Soc. Mech. Sci. Eng., 44, 508, 10.1007/s40430-022-03783-6 Laliberté-Riverin, 2020, Internal hydrogen embrittlement of pre-cracked, cadmium-plated AISI 4340 high strength steel with sustained load tests and incremental step-loading tests, Eng. Fract. Mech., 223, 10.1016/j.engfracmech.2019.106773 Souza, 2021, An Alternative Method for the Invariant Threshold Force Evaluation in Incremental Step Loading Tests, J. Test Eval., 49, 20190568, 10.1520/JTE20190568 G. Antonelli Martiniano, J. Eduardo Silveira Leal, M. Torres Piza Paes, W. Wladimir Bose Filho, S. Domingues Franco, Stiffness-based method to identify the threshold load of low hardness steels using the Incremental step loading test, Eng Fail Anal. 142 (2022) 106822. 10.1016/j.engfailanal.2022.106822. García, 2014, Estimation of the mechanical properties of metallic materials by means of the small punch test, J. Alloys Compd., 582, 708, 10.1016/j.jallcom.2013.08.009 Fleury, 1998, Small punch tests to estimate the mechanical properties of steels for steam power plant: I, Mechanical strength, Int. J. Press Vessel Pip., 75, 699, 10.1016/S0308-0161(98)00074-X Ha, 1998, Small punch tests to estimate the mechanical properties of steels for steam power plant: II, Fracture toughness, Int. J. Press Vessel Pip., 75, 707, 10.1016/S0308-0161(98)00075-1 J.B. Ju, J. il Jang, D. Kwon, Evaluation of fracture toughness by small-punch testing techniques using sharp notched specimens, Int J Press Vessel Pip. 80 (2003) 221–228. 10.1016/S0308-0161(03)00042-5. Arroyo, 2020, The role of the testing rate on Small Punch tests for the estimation of fracture toughness in hydrogen embrittlement, Procedia. Struct. Integr., 28, 188, 10.1016/j.prostr.2020.10.024 García, 2015, Development of a methodology to study the hydrogen embrittlement of steels by means of the small punch test, Mater. Sci. Eng A., 626, 342, 10.1016/j.msea.2014.12.083 Shin, 2021, Influence of specimen surface roughness on hydrogen embrittlement induced in austenitic steels during in-situ small punch testing in high-pressure hydrogen environments, Metals (Basel)., 11, 1579, 10.3390/met11101579 Arroyo, 2017, Analysis of key factors of hydrogen environmental assisted cracking evaluation by small punch test on medium and high strength steels, Mater. Sci. Eng. A., 691, 180, 10.1016/j.msea.2017.03.006 L.F.M. de Almeida, S.A.G. Oliveira, M.T.P. Paes, F.F. Ramos Neto, S.D. Franco, R.V. Arencibia, Effect of test velocity on the tensile strength of high strength steels using the small punch test in a hydrogen environment, Int J Press Vessel Pip. 194 (2021) 104552. 10.1016/j.ijpvp.2021.104552. B. Arroyo, P. González, L. Andrea, J.A. Álvarez, R. Lacalle, Application of the Incremental Step Loading Technique to Small Punch Tests in Hydrogen Embrittlement, in: Vol 6B Mater Fabr, American Society of Mechanical Engineers, 2019. 10.1115/PVP2019-93550. Arroyo, 2020, Threshold stress estimation in hydrogen induced cracking by Small Punch tests based on the application of the incremental step loading technique, Theor. Appl. Fract. Mech., 110, 10.1016/j.tafmec.2020.102839 Arroyo, 2021, Time optimization of the step loading technique in hydrogen embrittlement Small Punch Tests, Theor. Appl. Fract. Mech. American Society for Testing and Materials, Standard Specification for Steel Bars, Alloy, Standard Grades, 2012. 10.1520/F1026-86R08E01.2. American Society for Testing and Materials, 2018, ASTM E8, Test Methods for Tension Testing of, Metallic Materials American Society for Testing and Materials, 2014, ASTM E18–20, Standard Test Methods for Rockwell Hardness of Metallic Materials, 1 ASTM International, 2020, E3205–20 Standard Test Method for Small Punch Testing of Metallic Materials, United States L.F.M. ALMEIDA, Avaliação da Susceptibilidade à Fragilização por Hidrogênio em Aços de Alta Resistência e Baixa Liga usando Ensaios de Puncionamento Esférico em Meio Assistido, Universidade Federal de Uberlândia, 2022. 10.14393/ufu.te.2022.5021. Álvarez, 2021, Hydrogen embrittlement testing procedure for the analysis of structural steels with Small Punch Tests using notched specimens, Eng. Fract. Mech., 253, 10.1016/j.engfracmech.2021.107906 García, 2015, Development of a new methodology for estimating the CTOD of structural steels using the small punch test, Eng. Fail Anal., 50, 88, 10.1016/j.engfailanal.2015.01.011 Cuesta, 2015, Influence of the notch shape of pre-notched small punch specimens on the creep failure time, Eng. Fail Anal., 56, 332, 10.1016/j.engfailanal.2015.01.008 Bruchhausen, 2016, Recent developments in small punch testing: tensile properties and DBTT, Theor. Appl. Fract. Mech., 86, 2, 10.1016/j.tafmec.2016.09.012 Álvarez, 2019, Hydrogen embrittlement of structural steels: effect of the displacement rate on the fracture toughness of high-pressure hydrogen pre-charged samples, Int. J. Hydrogen Energy., 44, 15634, 10.1016/j.ijhydene.2019.03.279 Peral, 2019, Effects of hydrogen on the fracture toughness of CrMo and CrMoV steels quenched and tempered at different temperatures, Int. J. Hydrogen Energy., 10.1016/j.ijhydene.2018.12.084 Zafra, 2018, Effect of hydrogen on the tensile properties of 42CrMo4 steel quenched and tempered at different temperatures, Int. J. Hydrogen Energy., 43, 9068, 10.1016/j.ijhydene.2018.03.158 American Society for Testing and Materials, E8/E8M: Standard Test Methods for Tension Testing of Metallic Materials, (2016) 1–27. 10.1520/E0008. Martiniano, 2021, Effect of specific microstructures on hydrogen embrittlement susceptibility of a modified AISI 4130 steel, Int. J. Hydrogen Energy., 46, 36539, 10.1016/j.ijhydene.2021.08.147 Lee, 1999, Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions, J. Mater. Process Technol., 87, 198, 10.1016/S0924-0136(98)00351-3 Esaklul, 2009, Prevention of failures of high strength fasteners in use in offshore and subsea applications, Eng. Fail Anal., 16, 1195, 10.1016/j.engfailanal.2008.07.012 Li, 2017, Effect of tempering temperature and inclusions on hydrogen-assisted fracture behaviors of a low alloy steel, Mater. Sci. Eng. A., 682, 359, 10.1016/j.msea.2016.11.064 M.P. LaCoursiere, D.K. Aidun, D.J. Morrison, Hydrogen Embrittlement of AISI 4340 Using Slow Strain Rate Testing, in: Corros 2014, NACE International, San Antonio, 2014: pp. 1–13. Brahimi, 2017, Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners, Philos Trans. R Soc. A Math. Phys. Eng. Sci., 375, 20160407, 10.1098/rsta.2016.0407 Nanninga, 2010, Role of microstructure, composition and hardness in resisting hydrogen embrittlement of fastener grade steels, Corros. Sci., 52, 1237, 10.1016/j.corsci.2009.12.020 L. Raymond, Rising tesp-load test apparatus. U.S. Patent 5585570, filed October 12, 1994 and issued December 17, 1996., 5,585,570, 1996.