The equivariant Riemann–Roch theorem and the graded Todd class
Tài liệu tham khảo
Agapito, 2007, New polytope decompositions and Euler—Maclaurin formulas for simple integral polytopes, Adv. Math., 214, 379, 10.1016/j.aim.2007.02.008
Berline, 2004, Heat Kernels and Dirac Operators
Berline, 1982, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris, Ser. I, 295, 539
Berline
De Concini, 2013, Box splines and the equivariant index theorem, J. Inst. Math. Jussieu, 12, 503, 10.1017/S1474748012000734
De Concini, 2013, The infinitesimal index, J. Inst. Math. Jussieu, 12, 297, 10.1017/S1474748012000722
Guillemin, 1982, Geometric quantization and multiplicities of group representations, Invent. Math., 67, 515, 10.1007/BF01398934
Guillemin, 2007, Riemann sums over polytopes, Ann. Inst. Fourier (Grenoble), 57, 2183, 10.5802/aif.2330
Ma, 2014, Geometric quantization for proper moment maps: the Vergne conjecture, Acta Math., 212, 11, 10.1007/s11511-014-0108-3
Meinrenken, 1999, Singular reduction and quantization, Topology, 38, 699, 10.1016/S0040-9383(98)00012-3
Paradan, 1999, Formules de localisation en cohomologie equivariante, Compos. Math., 117, 243, 10.1023/A:1000602914188
Paradan, 2001, Localization of the Riemann–Roch character, J. Funct. Anal., 187, 442, 10.1006/jfan.2001.3825
Paradan, 2009, Formal geometric quantization, Ann. Inst. Fourier (Grenoble), 59, 199, 10.5802/aif.2429
Paradan, 2011, Formal geometric quantization II, Pac. J. Math., 253, 169, 10.2140/pjm.2011.253.169
Paradan, 2011, Wall-crossing formulas in Hamiltonian geometry, vol. 292, 295
Paradan
Vergne, 2016, Formal equivariant Aˆ class, splines and multiplicities of the index of transversally elliptic operators, Izv. Math., 80, 10.1070/IM8464
Vergne
Weitsman, 2001, Non-abelian symplectic cuts and the geometric quantization of noncompact manifolds, Lett. Math. Phys., 56, 31, 10.1023/A:1010907708197
Witten, 1982, Supersymmetry and Morse theory, J. Differ. Geom., 17, 661, 10.4310/jdg/1214437492