The equivariant Riemann–Roch theorem and the graded Todd class

Comptes Rendus Mathematique - Tập 355 - Trang 563-570 - 2017
Michèle Vergne1
1Université Denis-Diderot–Paris-7, Institut de Mathématiques de Jussieu, C.P. 7012, 4 place Jussieu, Boite Courrier 247, 75252 Paris Cedex 05, France

Tài liệu tham khảo

Agapito, 2007, New polytope decompositions and Euler—Maclaurin formulas for simple integral polytopes, Adv. Math., 214, 379, 10.1016/j.aim.2007.02.008 Berline, 2004, Heat Kernels and Dirac Operators Berline, 1982, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris, Ser. I, 295, 539 Berline De Concini, 2013, Box splines and the equivariant index theorem, J. Inst. Math. Jussieu, 12, 503, 10.1017/S1474748012000734 De Concini, 2013, The infinitesimal index, J. Inst. Math. Jussieu, 12, 297, 10.1017/S1474748012000722 Guillemin, 1982, Geometric quantization and multiplicities of group representations, Invent. Math., 67, 515, 10.1007/BF01398934 Guillemin, 2007, Riemann sums over polytopes, Ann. Inst. Fourier (Grenoble), 57, 2183, 10.5802/aif.2330 Ma, 2014, Geometric quantization for proper moment maps: the Vergne conjecture, Acta Math., 212, 11, 10.1007/s11511-014-0108-3 Meinrenken, 1999, Singular reduction and quantization, Topology, 38, 699, 10.1016/S0040-9383(98)00012-3 Paradan, 1999, Formules de localisation en cohomologie equivariante, Compos. Math., 117, 243, 10.1023/A:1000602914188 Paradan, 2001, Localization of the Riemann–Roch character, J. Funct. Anal., 187, 442, 10.1006/jfan.2001.3825 Paradan, 2009, Formal geometric quantization, Ann. Inst. Fourier (Grenoble), 59, 199, 10.5802/aif.2429 Paradan, 2011, Formal geometric quantization II, Pac. J. Math., 253, 169, 10.2140/pjm.2011.253.169 Paradan, 2011, Wall-crossing formulas in Hamiltonian geometry, vol. 292, 295 Paradan Vergne, 2016, Formal equivariant Aˆ class, splines and multiplicities of the index of transversally elliptic operators, Izv. Math., 80, 10.1070/IM8464 Vergne Weitsman, 2001, Non-abelian symplectic cuts and the geometric quantization of noncompact manifolds, Lett. Math. Phys., 56, 31, 10.1023/A:1010907708197 Witten, 1982, Supersymmetry and Morse theory, J. Differ. Geom., 17, 661, 10.4310/jdg/1214437492