The enumeration of minimal phylograms

Springer Science and Business Media LLC - Tập 35 - Trang 525-533 - 1973
Ludwig Nastansky1, Stanley M. Selkow1, Neil F. Stewart1
1Département d’informatique, Université de Montréal, Montréal, Québec

Tóm tắt

We consider the problem of finding a minimal tree to a set of nodes (of species represented byd characters) in a space ofd-dimensions subject to the hypothesis that evolution is nonconvergent and irreversible. A solution to this problem is formulated, using integer linear programming techniques.

Tài liệu tham khảo

Camin, J. H. and R. R. Sokal. 1965. “A Method for Deducing Branching Sequences in Phylogeny.”Evolution,19, 311–326. Dantzig, G. B. 1963.Linear Programming and Extensions. Princeton: Princeton University Press. Dreyfus, S. E. and R. A. Wagner. 1970. “The Steiner Problem in Graphs.” Operation Research Center Report ORC-70-32, Berkeley: University of California Press. Hadley, G. 1963.Linear Programming. Reading, Massachusetts: Addison-Wesley. Hendrickson, J. A. Jr. 1968. “Clustering in Numerical Cladistics: a Minimum-Length Directed Tree Problem.”Math. Biosci. 3, 371–381. Levin, A. Ju. 1971. “Algorithm for the Shortest Connection of a Group of Graph Vertices.”Soviet Math. Dokl. 12, No. 5, 1477–1481. Jardine, N. and R. Sibson. 1971.Mathematical Taxonomy. New York: John Wiley. Sokal, R. R. and P. H. A. Sneath. 1963.Principles of Numerical Taxonomy. San Francisco: Freeman.