Sự cải thiện của nước thải tổng hợp đối với việc khắc phục điện động không đồng nhất của đất sét tự nhiên bị nhiễm Cd

Springer Science and Business Media LLC - Tập 25 - Trang 1103-1114 - 2017
Ying-Ying Gu1, Chaocheng Zhao1, Hongjiang Li2, Hui An1
1Department of Environmental & Safety Engineering, China University of Petroleum (East China), Qingdao, China
2Qingdao Water Group Co. Ltd., Qingdao, China

Tóm tắt

Việc đạt được hiệu suất chiết xuất thỏa đáng trong việc khắc phục điện động đối với đất bị ô nhiễm kim loại nặng có khả năng đệm axit/bazơ cao thường rất khó khăn. Hệ chất tăng cường thường được yêu cầu. Trong nghiên cứu này, nước thải công nghiệp axit citric (CAIW) được tổng hợp được sử dụng làm chất tăng cường để khắc phục đất sét tự nhiên nhiễm cadmium từ Thượng Hải, Trung Quốc. Bốn thí nghiệm chiết xuất điện động đã được thực hiện để đánh giá hiệu quả cải thiện của CAIW trong việc khắc phục đất sét bị nhiễm kim loại có khả năng đệm cao và ảnh hưởng của thời gian điều trị cũng như nồng độ cadmium ban đầu đối với sự di chuyển của cadmium trong mẫu thử. Kết quả từ các thí nghiệm điện động cho thấy CAIW có thể tăng cường hiệu quả việc vận chuyển cadmium so với HNO3 có cùng pH. Việc di động của cadmium được cải thiện khi thời gian điều trị kéo dài từ 104 đến 261.2 giờ, nhưng hiệu suất loại bỏ cadmium trung bình không được cải thiện đáng kể. Sự phân bố cadmium không đồng nhất trong mẫu thử được quan sát thấy sau các thí nghiệm điện động cải tiến do có các gradient điện cục bộ với gradient điện khoảng 1 V/cm và tỉ lệ giữa khoảng cách giữa các điện cực cùng cực tính với đường kính ngoài của điện cực là 2.8 (50:18 mm).

Từ khóa

#khắc phục điện động #đất sét tự nhiên #cadmium #nước thải axit citric #ô nhiễm kim loại nặng

Tài liệu tham khảo

Acar YB, Hamed JT, Alshawabkeh AN, Gale RJ (1994) Removal of cadmium(II) from saturated kaolinited by application of electrical current. Geotechnique 44(2):239–254 Bassi R, Prasher SO, Simpson BK (2000) Extraction of metals from a contaminated sandy soil using citric acid. Environ Prog 19(4):275–282 Blake L, Goulding KWT (2002) Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil 240(2):235–251 Cameselle C (2014) Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil. Electrochi Acta 181:31–38 Chen YX, Xu J, Yu MG, Chen XC, Shi JY (2010) Lead contamination in different varieties of tea plant (Camellia sinensis L.) and factors affecting lead bioavailability. J Sci Food Agr 90(9):1501–1507 Dias-Ferreira C, Kirkelund GM, Ottosen LM (2015) Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process. Chemosphere 119:889–895 Ding L, Lv WY, Yao K, Li LM, Wang MM, Liu GG (2017) Remediation of Cd(II)-contaminated soil via humin-enhanced electrokinetic technology. Environ Sci Pollut R 24(4):3430–3436 Demir A, Pamukcu S, Shrestha RA (2015) Simultaneous removal of Pb, Cd and Zn from heavily contaminated mine tailing soil using enhanced electrochemical process. Environ Eng Sci 32(5):416–424 Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. John Wiley & Sons, New York Fischer K, Bipp HP, Riemschneider P, Leidmann P, Bieniek D, Kettrup A (1998) Utilization of biomass residues for the remediation of metal-polluted soils. Environ Sci Technol 32(14):2154–2161 Fu RB, Wen DD, Xia XQ, Zhang W, Gu YY (2017) Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes. Chem Eng J 316:601–608 Giannis A, Gidarakos E (2005) Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil. J Hazard Mater 123(1–3):165–175 Gidarakos E, Giannis A (2006) Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH. Water Air Soil Poll 172(1–4):295–312 Gu YY, Fu RB, Li HJ, An H (2015) A new two-dimensional experimental apparatus for electrochemical remediation processes. Chinese. J Chem Eng 23:1389–1397 Gu YY, Yeung AT (2011) Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater. J Hazard Mater 191:144–149 Gu YY, Yeung AT (2012) Use of citric acid industrial wastewater to enhance electrochemical remediation of cadmium-contaminated natural clay. Geotechnical Special Publication 225:3995–4004 Gu YY, Yeung AT, Koenig A, Li HJ (2009) Effects of chelating agents on zeta potential of cadmium-contaminated natural clay. Sep Sci Technol 44:2203–2222 Gu YY, Yeung AT, Tsang DCW, RB F (2013) Applications of citric acid industrial wastewater and phosphonates for soil remediation: effects on temporal change of cadmium distribution. Soil Sediment Contam 22:876–889 Hahladakis JN, Latsos A, Gidarakos E (2016) Performance of electroremediation in real contaminated sediments using a big cell, periodic voltage and innovative surfactants. J Hazard Mater 320:376–385 Hsu C (1997)Electrokinetic remediation of heavy metal contaminated soils. Dissertation, Texas A&M University Kim SO, Moon SH, Kim KW (2001) Removal of heavy metals from soils using enhanced electrokinetic soil processing. Water Air Soil Poll 125(1–4):259–272 Neilson JW, Artiola JF, Maier RM (2003) Characterization of lead removal from contaminated soils by nontoxic soil-washing agents. J Environ Qual 32(3):899–908 Nogawa K, Kido T (1993) Biological monitoring of cadmium exposure in itai-itai disease epidemiology. Int Arch Occ Env Hea 65(supplement 1):S43–S46 Page AL (1982)Methods of soil analysis, part 2. Chemical and Microbiological Properties. AmSoc of Agron, Inc, Madison Pamukcu S, Ghazanfari E, Wittle JK (2014) Reduction of contaminants in soil and water by direct electric current. In: ChilingarG, HarounM (eds) Electrokinetics for Petroleum and Environmental Engineers. John Wiley & Sons, Inc., New Jersey and Scrivener, Massachusetts, pp 33–102 Pamukcu S, Weeks A, Wittle JK (1997) Electrochemical extraction and stabilization of selected inorganic species in porous media. J Hazard Mater 55(1–3):305–318 Pamukcu S, Whittle LK (1992) Electrokinetic removal of selected heavy metals from soil. Environ Prog 11(4):241–250 Poulsen IF, Hansen HCB (2000) Soil sorption of nickel in presence of citrate or arginine. Water Air Soil Poll 120(3–4):249–259 Puppala SK, Alshawabkeh AN, Acar YB, Gale RJ, Bricka M (1997) Enhanced electrokinetic remediation of high sorption capacity soil. J Hazard Mater 55(1–3):203–220 Sah JG, Che JY (1998) Study of the electrokinetic process on Cd and Pb spiked soils. J Hazard Mater 58(1–3):301–315 Shen GX, Xie Z, Qian XY, Huang LH, Guo CX, Wang M, Shan ZC (2006) Investigation and analysis of Heavy metal accumulation in the soil of vegetable cropland in Shanghai. J Agro-environ Sci 25(z1):37–40 (in Chinese) Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851 Vengris T, Binkiene R, Sveikauskaite A (2001) Electrokinetic remediation of lead-, zinc- and cadmium-contaminated soil. J Chem Tech Biotechnol 76(11):1165–1170 Villen-Guzman M, Paz-Garcia J, Amaya-Santos G, Rodriguez-Maroto JM, Vereda-Alonso C, Gomez-Lahoz C (2015a) Effects of the buffering capacity of the soil on the mobilization of heavy metals. Equilibrium and kinetics. Chemosphere 131:78–84 Villen-Guzman M, Paz-Garcia J, Amaya-Santos G, Rodriguez-Maroto JM, Vereda-Alonso C, Gomez-Lahoz C (2015b) Scaling-up the acid-enhanced electrokinetic remediation of a real contaminated soil. Electrochimi Acta 181:139–145 Wong JSH, Hicks RE, Probstein RF (1997) EDTA-enhanced electroremediation of metal-contaminated soils. J Hazard Mater 55(1–3):61–79 Xiao R, Wang S, Li RH, Jim J, Zeng ZQ (2017) Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotox Environ Safe 141:17–24 Yao CX, Chen ZL, Zhang J, Hou J (2005) Heavy metal pollution assessment of vegetables in Pudong zone ofShanghai. J Agro-environ Sci 24(4):761–765 (in Chinese) Yeung AT (2006) Contaminant extractability by electrokinetics. Environ Eng Sci 23(1):202–224 Yeung AT (2009) Geochemical processes affecting electrochemical remediation. In: Reddy KR, Cameselle C (eds) Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. John Wiley & Sons, New York, pp 65–94 Yeung AT, Gu YY (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195(1–3):11–29 Yeung AT, Gu YY (2012) Use of chelating agents in electrochemical remediation of contaminated soil. In: Tsang DCW, Lo IMC, Surampalli RY (eds) Chelating Agents for Land Decontamination Technologies. ASCE, Virginia, pp 212–280 Yeung AT, Hsu C, Menon RM (1996) EDTA-enhanced electrokinetic extraction of lead. J Geotech Eng ASCE 122(8):666–673 Yeung AT, Hsu C, Menon RM (1997) Physicochemical soil-contaminant interactions during electrokinetic extraction. J Hazard Mater 55(1–3):221–237 Zhou DM, Deng CF, Cang L, Alshawabkeh AN (2005) Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. Chemosphere 61(4):519–527