The energy efficiency model under the market response and the evolutionary path under its regulation policy in China

Energy Efficiency - Tập 12 - Trang 895-920 - 2018
Guangyong Zhang1, Lixin Tian1,2, Wenbin Zhang1,3, Xu Yan1, Bingyue Wan1
1Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, People’s Republic of China
2Energy Interdependence Behavior and Strategy Research Center, School of Mathematical Sciences, Nanjing Normal University, Nanjing, People’s Republic of China
3School of Mathematical Science, Taizhou Institute of Sci. & Tech, NUST, Taizhou, People’s Republic of China

Tóm tắt

According to the causal relationship among energy efficiency, energy price, and economic growth in China, a network structure of mutual transmission is constructed and a novel model of nonlinear dynamic system is also established. With the help of numerical simulation, the impacts of the parameters on the motion state of the system and the subsystem are analyzed. Then, the parameters are identified by means of BP neural network, and the model of novel dynamic system is given, which has a practical significance to reflect the actual situation of the system in China. According to the state of the actual evolution, we analyze the regulatory effect of the policy on the state of the system and find that four policies can all make the unstable system become stable. Comparing and analyzing the regulatory effects of the single and combined policy on the system show that the combined policy has a shorter time to reach the stable state and it is more conducive to the reduction of energy price. However, the single policy has a better effect on improving the level of energy efficiency and economic growth. In addition, the evolutionary paths of energy efficiency are analyzed at different regulatory levels under the same policy, and the results show that the higher the regulatory level is and the shorter time it takes to reach steady state for energy efficiency, the lower the level of energy efficiency is.

Tài liệu tham khảo

Ameena, A., Muhammad, Z., & Xi, J. Y. (2016). Energy prices and economic growth in Pakistan: A macro-econometric analysis. Renewable and Sustainable Energy Reviews, 55, 25–33. Chen, K. H., Yang, H. Y., Lee, J. M., & Chi, C. F. (2016). The impact of energy prices on energy consumption and energy efficiency: Evidence from Taiwan. Energy Efficiency, 9, 1329–1349. Fang, G. C., et al. (2012). Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system. Energy, 40, 291–299. Fang, G. C., et al. (2013). The impacts of carbon tax on energy intensity and economic growth - a dynamic evolution analysis on the case of China. Applied Energy, 110, 17–28. Fang, G. C., et al. (2014). Government control or low carbon lifestyle?-analysis and application of a novel selective-constrained energy-saving and emission-reducing dynamic evolution system. Energy Policy, 68, 495–507. Istemi, B., & Hakan, Y. (2014). Energy prices and economic growth in the long run: Theory and evidence. Renewable and Sustainable Energy Reviews, 36, 228–235. Jang, C. J., et al. (2009). Energy prices, energy conservation, and economic growth: Evidence from the postwar United States. International Review of Economics and Finance, 18, 691–699. Kohler, M. (2014). Differential electricity pricing and energy efficiency in South Africa. Energy, 64, 524–532. Nicholas, M. O. (2010). Energy consumption, prices and economic growth in three SSA countries: A comparative. Energy Policy, 38, 2463–2469. Nicola, C., Massimiliano, C., & Dirk, W. T. V. (2016). Does energy efficiency improve technological change and economic growth in developing countries? Energy Policy, 92, 279–285. Qin, F., & Rajah, R. (2014). Electricity consumption, technological innovation, economic growth and energy prices: Does energy export dependency and development levels matter? Energy Procedia, 61, 1142–1145. Renuka, M., & John, A. A. (2007). Energy consumption, economic growth and prices: A reassessment using panel VECM for developed and developing countries. Energy Policy, 35, 2481–2490. Sun, F. L., & Du, W. (2014). An analysis of the effects of economic growth, industrial structure and energy efficiency on carbon emission of Jilin Province. Applied Mechanics and Materials, 675, 1789–1792. Sun, M., Tian, L. X., Fu, Y., & Qian, W. (2007). Dynamics and adaptive synchronization of the energy resource system. Chaos, Solitons & Fractals, 31, 879–888. Sun, M., Tian, L. X., & Zeng, C. Y. (2009). The energy resources system with parametric perturbations and its hyperchaos control. Nonlinear Analysis: Real World Applications, 10, 2620–2626. Tian, R. J. (2017). Study on the promotion of natural gas-fired electricity with energy market reform in China using a dynamic game-theoretic model. Applied Energy, 185, 1832–1839. Vacim, A., et al. (2016). Energy efficiency, low-carbon energy production, and economic growth in CIS countries. IOP Conference Series: Earth and Environmental Science, 43, 1. Wang, M. G., & Tian, L. X. (2015). Regulation effect of energy market-theoretical and empirical analysis based on a novel energy prices-energy supply-economic growth dynamic system. Applied Energy, 155, 526–546. Wang, Q., Zhao, Z., Zhou, P., & Zhou, D. (2013). Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach. Economic Modelling, 35, 283–289. Wang, Q., Zhang, C., & Cai, W. (2017). Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis. Energy Policy, 109, 181–190. Zhang, J. (2009). Energy efficiency and economic growth of China: 1953-2006. Ecological Economy, 5, 122–131. Zhang, W. B., et al. (2016). The evolution model of electricity market on the stable development in China and its dynamic analysis. Energy, 114, 344–359. Zhao, L. C. (2015). Energy prices, energy consumption intensity and economic growth. Enterprise Economy, 11, 166–170.