The energy consumption and carbon footprint of the LOFAR telescope
Tóm tắt
The LOw Frequency ARray (LOFAR) is a European radio telescope operating since 2010 in the frequency bands 10 - 80 MHz and 110 - 250 MHz. This article provides an analysis of the energy consumption and the carbon footprint of LOFAR. The approach used is a Life Cycle Analysis (LCA). We find that one year of LOFAR operations requires 3,627 MWh of electricity, 48,714 m3 gas and 135,497 liters of fuel. The associated carbon emission is 1,867 tCO2e/year. Results include the footprint stemming from operations of all LOFAR stations and central processing, but exclude scientific post-processing and activities. The electrical energy required for scientific processing is assessed separately. It ranges from 1% (standard imaging and time-domain), to 40% (wide field long baseline imaging) of the energy consumption for the observation. The outcome provides a transparent baseline in making LOFAR more sustainable and can serve as a blueprint for the analysis of other research infrastructures.
Tài liệu tham khảo
Aujoux, C., Kotera, K., Blanchard, O.: Estimating the carbon footprint of the GRAND project, a multi-decade astrophysics experiment. Astropart. Phys. 131, 102587 (2021)
Jongerius, R., Wijnholds, S.J., Nijboer, R., H. Corporaal, H.: An end-to-end computing model for the Square Kilometre Array. Computer 47, 48–54 (2014)
Veenboer, B., Romein, J.W.: Radio-astronomical imaging: FPGAs vs GPUs. 509–521 (2019). Springer
Schmatz, M.L., Jongerius, R., Dittmann, G., Anghel, A., Engbersen, T., van Lunteren, J., Buchmann, P.: Scalable, efficient ASICS for the square kilometre array: From A/D conversion to central correlation. 7505–7509 (2014). https://doi.org/10.1109/ICASSP.2014.6855059
Lenkiewicz, P., Broekema, P.C., Metzler, B.: Energy-efficient data transfers in radio astronomy with software UDP RDMA. Futur. Gener. Comput. Syst. 79, 215–224 (2018)
Ojeda, O.A.Y., Denman, N., Wunduke, S.: The Case for SoC in Future Radio Astronomy. In: 2022 IEEE 35th International System-on-Chip Conference (SOCC), pp. 1–2. IEEE (2022)
Barbosa, D., Bergano, M., Ribeiro, V.A.R.M., Loots, A., Thondikulam, V.L., Gaylard, M., van Ardenne, A., Paulo, C., Colafrancesco, S., Amador, J.C., Maia, R., Melo, R.: Design, environmental and sustainability constraints of new African observatories: The example of the Mozambique Radio Astronomy Observatory. 1–5 (2013). https://doi.org/10.1109/AFRCON.2013.6757829
Barbosa, D., Barraca, J.P., Boonstra, A.-J., Aguiar, R., van Ardenne, A., Santander-Vela, J.D., Verdes-Montenegro, L.: A sustainable approach to large ICT science based infrastructures; the case for radio astronomy. 668–674 (2014). https://doi.org/10.1109/ENERGYCON.2014.6850498
Knödlseder, J., Brau-Nogué, S., Coriat, M., Garnier, P., Hughes, A., Martin, P., Tibaldo, L.: Estimate of the carbon footprint of astronomical research infrastructures. Nat. Astron. 6(4), 503–513 (2022)
Martin, P., Brau-Nogué, S., Coriat, M., Garnier, P., Hughes, A., Knödlseder, J., Tibaldo, L.: A comprehensive assessment of the carbon footprint of an astronomical institute. Nat. Astron. 6, 1219–1222 (2022)
Burtscher, L., Dalgleish, H., Barret, D., Beuchert, T., Borkar, A., Cantalloube, F., Frost, A., Grinberg, V., Hurley-Walker, N., Impellizzeri, V., et al.: Forging a sustainable future for astronomy. Nat. Astron. 5(9), 857–860 (2021)
Van der Tak, F., Burtscher, L., Zwart, S.P., Tabone, B., Nelemans, G., Bloemen, S., Young, A., Wijnands, R., Janssen, A., Schoenmakers, A.: The carbon footprint of astronomy research in the Netherlands. Nat. Astron. 5(12), 1195–1198 (2021)
van Haarlem, M.P., Wise, M.W., Gunst, A., Heald, G., McKean, J.P., Hessels, J.W., de Bruyn, A.G., Nijboer, R., Swinbank, J., Fallows, R., et al.: LOFAR: The low-frequency array. Astron. Astrophys. 556, 2 (2013)
Aujoux, C., Blanchard, O., Kotera, K.: How to assess the carbon footprint of a large-scale physics project. Nat. Rev. Phys. 3(6), 386–387 (2021)
GHG-protocol: The Green House Gas Protocol, revised edition. https://ghgprotocol.org/
Brander, M., Gillenwater, M., Ascui, F.: Creative accounting: A critical perspective on the market-based method for reporting purchased electricity (scope 2) emissions. Energy Pol. 112, 29–33 (2018)
Carbon Footprint Ltd.: Location-based emission factors. https://www.carbonfootprint.com/docs/2022_03_emissions_factors_sources_for_2021_electricity_v11.pdf
Kruithof, G.H., OpenAIRE.: LOFAR Carbon Footprint and Energy Consumption. CERN (2023). https://doi.org/10.5281/zenodo.7844961. https://www.zenodo.org/
Emissiefactoren.: List of emission factors from dutch government. https://www.co2emissiefactoren.nl/lijst-emissiefactoren/
EEA.: Greenhouse gas emission intensity of electricity generation. https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-6
Collings, D.: Carbon footprint benchmarking data for buildings. Struct. Eng. 100, 10–13 (2020)
RVO.: Fuel per kilometer, average numbers for the Netherlands. https://www.rvo.nl/sites/default/files/2022-06/Toelichting-brandstofprijsvergelijking-per-100-km-autoselectie-2021.pdf
RVO.: Gross Energy Requirement. https://www.rvo.nl/sites/default/files/2018/11/GER-waarden%20en%20CO2-lijst%20augustus%202018.xlsx
EcoInvent.: The EcoInvent Dabatase. https://ecoinvent.org/the-ecoinvent-database/
Parsons.: Dimensions of Shipping Containers. https://www.parsonscontainers.co.uk/container-dimensions
DELL.: Carbon emission of a DELL R470 server. https://www.delltechnologies.com/asset/en-us/products/servers/technical-support/Full_LCA_Dell_R740.pdf
Hoekstra.: Carbon emission of earth moving. https://www.dhoekstra.nl/wp-content/uploads/2014/06/2.A.3-Energieaudit-verslag-DH_v1-2013.pdf
Accuvio.: Refrigerant Leakage. https://support.accuvio.com/support/solutions/articles/4000040366-annual-leakage-rate-for-the-refrigeration-air-con-hvac-
Backupworks.: Carbon emission of data storage. https://www.backupworks.com/tape-storage-reduce-energy-consumption-and-carbon-emissions.aspx
TreesForAll.: Carbon emission of air travel. https://treesforall.nl/forms/compenseer-vliegreis/
De Gasperin, F., Dijkema, T., Drabent, A., Mevius, M., Rafferty, D., Van Weeren, R., Brüggen, M., Callingham, J., Emig, K., Heald, G., et al.: Systematic effects in LOFAR data: A unified calibration strategy. Astron. Astrophys. 622, 5 (2019)
Tasse, C., Shimwell, T., Hardcastle, M., O’sullivan, S., van Weeren, R., Best, P., Bester, L., Hugo, B., Smirnov, O., Sabater, J., et al.: The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1-I. direction-dependent calibration and imaging. Astron. Astrophys. 648, 1 (2021)
Sweijen, F., van Weeren, R., Röttgering, H., Morabito, L., Jackson, N., Offringa, A., van der Tol, S., Veenboer, B., Oonk, J., Best, P., et al.: Deep sub-arcsecond wide-field imaging of the Lockman Hole field at 144 mhz. Nat. Astron. 6(3), 350–356 (2022)
Fankhauser, S., Smith, S.M., Allen, M., Axelsson, K., Hale, T., Hepburn, C., Kendall, J.M., Khosla, R., Lezaun, J., Mitchell-Larson, E., et al.: The meaning of net zero and how to get it right. Nat. Clim. Chang. 12(1), 15–21 (2022)
ASTRON.: Major upgrade of LOFAR. https://www.astron.nl/major-upgrade-of-international-lofar-telescope-approved/
European Commission.: Green House Gas Statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Greenhouse_gas_emission_statistics_-_carbon_footprints
European Commission.: Electricity Statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_and_heat_statistics#Consumption_of_electricity_per_capita_in_the_households_sector