The emptiness of intersection problem for languages of k-valued categorial grammars (classical and Lambek) is undecidable

Electronic Notes in Theoretical Computer Science - Tập 53 - Trang 81-93 - 2004
Annie Foret1
1IRISA-University of Rennes 1, Rennes, FRANCE

Tài liệu tham khảo

Bar-Hillel, 1953, A quasi arithmetical notation for syntactic description, Language, 29, 47, 10.2307/410452 W. Buszkowski. Mathematical linguistics and proof theory. In van Benthem and ter Meulen [14], chapter 12, pages 683-736. Jean-Yves Girard. Linear logic: its syntax and semantics. In Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, volume 222 of London Mathematical Society Lecture Notes, pages 1-42. Cambridge University Press, 1995. Hopcroft, 1979 Gerhard Jager, 2001, On the generative capacity of multimodal categorial grammars, To appear in Journal of Language and Computation Makoto Kanazawa, 1998, Learnable classes of categorial grammars Joachim Lambek, 1958, The mathematics of sentence structure, American mathematical monthly, 65, 154, 10.2307/2310058 Harry, 1981 Michael Moortgat, 1996, Multimodal linguistic inference, Journal of Logic, Language and Information, vol. 5, 349, 10.1007/BF00159344 Michael Moortgat. Categorial type logic. In van Benthem and ter Meulen [14], chapter 2, pages 93-177. Jacques Nicolas. Grammatical inference as unification. Rapport de Recherche RR-3632, INRIA, 1999. With associated web site http://www.inria.fr/RRRT/publications-eng.html. Mati Pentus, 1993, Lambek grammars are context-free Retoré, 1996, Calcul de lambek et logique lineaire, Traitement Automatique desLangues, 37, 39 1997