The emerging functions of oligodendrocytes in regulating neuronal network behaviour

BioEssays - Tập 37 Số 1 - Trang 60-69 - 2015
Livia de Hoz1, Mikael Simons2,3
1Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
2Department of Neurology, University of Göttingen, Göttingen, Germany
3Max Planck Institute of Experimental Medicine, Göttingen, Germany

Tóm tắt

Myelin is required for efficient nerve conduction, but not all axons are myelinated to the same extent. Here we review recent studies that have revealed distinct myelination patterns of different axonal paths, suggesting that myelination is not an all or none phenomenon and that its presence is finely regulated in central nervous system networks. Whereas powerful reductionist biology has led to important knowledge of how oligodendrocytes function by themselves, little is known about their role in neuronal networks. We still do not understand how oligodendrocytes integrate information from neurons to adapt their function to the need of the system. An intricate cross talk between neurons and glia is likely to exist and to determine how neuronal circuits operate as a whole. Dissecting these mechanisms by using integrative systems biology approaches is one of the major challenges ahead.

Từ khóa


Tài liệu tham khảo

10.1242/jcs.151043

10.1016/j.tcb.2011.06.004

10.1038/nrn1743

10.1038/nrn2480

10.1097/00005072-198805000-00003

10.1097/00005072-198705000-00005

10.1016/0301-0082(93)90015-K

10.1523/JNEUROSCI.2180-11.2011

10.1126/science.1190927

10.1016/j.ceb.2013.04.007

10.1016/j.tins.2008.04.001

10.1016/j.neuroscience.2013.10.018

10.1016/j.neuroscience.2014.03.063

10.1126/science.1206998

10.1126/science.1252304

10.1038/nn.3263

10.1126/science.1220845

10.1038/nn.2412

10.1162/jocn_a_00240

10.1016/j.neuron.2013.01.006

10.1523/JNEUROSCI.2831-08.2008

10.1016/j.neuroscience.2013.11.007

10.1038/13158

10.1038/nn1008

10.1001/archpsyc.1994.03950060041004

10.1093/schbul/15.4.585

10.1126/science.1249766

10.4161/cib.3.6.13242

10.1113/jphysiol.2012.237305

10.1177/1073858414535986

10.1038/nmeth.2105

10.1038/nn1460

10.1016/S0896-6273(00)80515-2

10.1073/pnas.100076197

10.1038/361258a0

10.1073/pnas.93.18.9887

10.1016/j.neuron.2006.02.006

10.1113/jphysiol.1951.sp004655

10.1371/journal.pone.0007754

Ozturk AH, 2002, Morphometric comparison of the human corpus callosum in professional musicians and non‐musicians by using in vivo magnetic resonance imaging, J Neuroradiol, 29, 29

10.1016/j.neuroimage.2010.04.014

10.1038/nn1516

10.1038/nn.3045

10.1523/JNEUROSCI.1619-09.2010

10.1002/jnr.20742

10.1523/JNEUROSCI.3647-07.2007

10.1523/JNEUROSCI.3048-13.2013

10.1002/cne.901720205

Zhao YY, 2012, Enriched environment increases the myelinated nerve fibers of aged rat corpus callosum, Anat Rec (Hoboken), 295, 999, 10.1002/ar.22446

10.1016/j.brainres.2009.06.087

10.1002/dneu.22060

10.1038/nn.3190

10.1016/j.neulet.2010.05.043

10.1016/S0896-6273(02)01067-X

10.1016/S0896-6273(00)80469-9

10.1111/j.1460-9568.2010.07082.x

10.1098/rstb.1983.0022

10.1038/35012083

10.1038/nn1850

10.1177/1073858414530784

10.1002/glia.22681

10.1016/j.cell.2014.04.052

10.1371/journal.pbio.1001743

10.1021/bi901005f

10.1371/journal.pbio.1001577

10.1073/pnas.1220104110

10.1016/S0091-679X(10)96020-2

10.1016/j.cell.2013.11.044

10.1016/j.neuroimage.2010.11.022

10.1523/JNEUROSCI.0150-08.2008

10.1523/JNEUROSCI.0219-10.2010

10.1523/JNEUROSCI.0137-12.2012

10.1523/JNEUROSCI.6005-11.2012

10.1523/JNEUROSCI.3239-10.2011

10.1002/glia.21156

10.1016/j.neuron.2010.09.009

Halter JA, 1995, Operantly conditioned motoneuron plasticity: Possible role of sodium channels, J Neurophysiol, 173, 867, 10.1152/jn.1995.73.2.867

10.1146/annurev.neuro.24.1.807

10.1152/jn.00059.2004

10.1016/j.conb.2004.07.002

10.1126/science.1149639

10.1016/j.neuroscience.2013.06.047

10.1002/dneu.20541

10.1523/JNEUROSCI.3464-09.2010

10.1523/JNEUROSCI.5460-13.2014

10.1073/pnas.0937380100

10.1113/jphysiol.1993.sp019857

10.1152/jn.00922.2002

10.1155/NP.1999.147

10.1523/JNEUROSCI.18-24-10464.1998

10.1093/med/9780199746545.003.0013

10.1113/jphysiol.2011.209148

10.1146/annurev.neuro.21.1.149

10.1016/j.heares.2007.01.004

10.1038/nature06289

10.1038/nature10674

10.1126/science.6204382

10.1016/0022-510X(84)90160-6

Friede RL, 1985, Changes in myelin sheath thickness and internode geometry in the rabbit phrenic nerve during growth, J Anat, 143, 103

10.1152/jn.1997.77.1.364

10.1038/nature11007

10.1038/nature11314

10.1002/ana.23607

Nave KA, Myelination and the trophic support of long axons, Nat Rev Neurosci, 11, 275, 10.1038/nrn2797

10.1523/JNEUROSCI.3430-11.2012

10.1523/JNEUROSCI.3516-10.2011

10.1523/JNEUROSCI.5200-08.2009

10.1016/S0896-6273(01)00410-X

Arvanitaki A, 1940, Reactions declenches sur un axone au repos par l'activite d'un autre axone au niveau d'une zone de contact: Conditions de la transmission de l'excitation, CR Soc Biol, 133, 39

10.1002/jcp.1030110210

10.1113/jphysiol.1940.sp003823

10.1038/nature11712

10.1038/nn.2727

10.1016/S0306-4522(00)00366-3

10.1016/j.pneurobio.2012.02.005

10.1113/jphysiol.1975.sp010971

10.1113/jphysiol.1980.sp013356

10.1093/brain/103.1.139

Bokil H, 2001, Ephaptic interactions in the mammalian olfactory system, J Neurosci, 21, RC173, 10.1523/JNEUROSCI.21-20-j0004.2001

10.1038/nn1571

10.1002/cne.903400206

10.1016/0896-6273(94)90247-X

10.1126/science.1114362

10.1016/j.neuroimage.2013.03.060

10.1007/BF00685012

10.1007/BF01186817

10.1002/(SICI)1098-1136(199602)16:2<117::AID-GLIA4>3.0.CO;2-0

10.1002/jnr.21339

10.1126/science.1254960