The emerging field of lipidomics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wilson, J. F. Long-suffering lipids gain respect. The Scientist 17, 34–46 (2003).
Lagarde, M., Geloen, A., Record, M., Vance, D. & Spener, F. Lipidomics is emerging. Biochim. Biophys. Acta 1634, 61 (2003).
Feng, L. & Prestwich, G. D. (eds) Functional Lipidomics (Dekker-CRC, New York, 2005). First comprehensive reference text on various aspects of functional lipidomics with contributions from leading researchers in the field.
Glomset, J. A. Protein–lipid interactions on the surfaces of cell membranes. Curr. Opin. Struct. Biol. 9, 425–427 (1999).
Scott, D. L. & Sigler, P. B. Structure and catalytic mechanism of secretory phospholipases A2. Adv. Protein Chem. 45, 53–88 (1994).
Gelb, M. H., Min, J. H. & Jain, M. K. Do membrane-bound enzymes access their substrates from the membrane or aqueous phase: interfacial versus non-interfacial enzymes. Biochim. Biophys. Acta 1488, 20–27 (2000).
Rao, V. D., Misra, S., Boronenkov, I. V., Anderson, R. A. & Hurley, J. H. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 94, 829–839 (1998).
Tsujishita, Y., Guo, S., Stolz, L. E., York, J. D. & Hurley, J. H. Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase. Cell 105, 379–389 (2001).
Roberts, M. F. Phospholipases: structural and functional motifs for working at an interface. FASEB J. 10, 1159–1172 (1996).
Kunz, J. et al. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol. Cell 5, 1–11 (2000).
Goni, F. M. & Alonso, A. in Lipases and Phospholipases in Drug Development (eds Muller, G. & Petry, S.) 79–100 (Wiley-VCH, Weinheim, Germany, 2004).
Israelachvili, J. N. Refinement of the fluid-mosaic model of membrane structure. Biochim. Biophys. Acta 469, 221–225 (1977).
Duzgunes, N., Straubinger, R. M., Baldwin, P. A., Friend, D. S. & Papahadjopoulos, D. Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry 24, 3091–3098 (1985).
Chernomordik, L., Kozlov, M. M. & Zimmerberg, J. Lipids in biological membrane fusion. J. Membr. Biol. 146, 1–14 (1995).
Feigenson, G. W. & Buboltz, J. T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80, 2775–2788 (2001).
Tanaka, C. & Nishizuka, Y. The protein kinase C family for neuronal signaling. Annu. Rev. Neurosci. 17, 551–567 (1994).
Luo, B., Regier, D. S., Prescott, S. M. & Topham, M. K. Diacylglycerol kinases. Cell Signal. 16, 983–989 (2004).
Athenstaedt, K. & Daum, G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur. J. Biochem. 266, 1–16 (1999).
Balazy, M. Eicosanomics: targeted lipidomics of eicosanoids in biological systems. Prostaglandins Other Lipid Mediat. 73, 173–180 (2004).
Barenholz, Y. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications. Subcell. Biochem. 37, 167–215 (2004).
Pettus, B. J., Chalfant, C. E. & Hannun, Y. A. Sphingolipids in inflammation: roles and implications. Curr. Mol. Med. 4, 405–418 (2004).
Reynolds, C. P., Maurer, B. J. & Kolesnick, R. N. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett. 206, 169–180 (2004).
Hla, T. Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol. 15, 513–520 (2004).
Kee, T. H., Vit, P. & Melendez, A. J. Sphingosine kinase signalling in immune cells. Clin. Exp. Pharmacol. Physiol. 32, 153–161 (2005).
Takenawa, T. & Itoh, T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta 1533, 190–206 (2001).
Wenk, M. R. & De Camilli, P. Inaugural article: Protein–lipid interactions and phosphoinositide metabolism in membrane traffic: Insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA 101, 8262–8269 (2004).
Hurley, J. H. & Meyer, T. Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol. 13, 146–152 (2001).
Balla, T. & Varnai, P. Visualizing cellular phosphoinositide pools with GFP-fused protein- modules. Sci STKE L3 (2002).
van Rossum, D. B. et al. Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434, 99–104 (2005).
Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature Cell Biol. 6, 393–404 (2004).
Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001).
Rudge, S. A., Anderson, D. M. & Emr, S. D. Vacuole size control: regulation of PtdIns(3, 5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3, 5)P2-specific phosphatase. Mol. Biol. Cell 15, 24–36 (2004).
Stone, S. J. et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279, 11767–11776 (2004).
Shi, Y. & Burn, P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nature Rev. Drug Discov. 3, 695–710 (2004).
Muller, G. in Lipases and Phospholipases in Drug Development 231–331 (Wiley-VCH, Weinheim, Germany, 2004).
Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).
Sleeman, M. W. et al. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nature Med. 11, 199–205 (2005).
Cohen, P. et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297, 240–243 (2002).
Watson, R. T. & Pessin, J. E. Intracellular organization of insulin signaling and GLUT4 translocation. Recent Prog. Horm. Res. 56, 175–193 (2001).
Roden, M. et al. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest 97, 2859–2865 (1996).
Anderson, R. G. Joe Goldstein and Mike Brown: from cholesterol homeostasis to new paradigms in membrane biology. Trends Cell Biol. 13, 534–539 (2003).
Rawson, R. B. The SREBP pathway — insights from Insigs and insects. Nature Rev. Mol. Cell Biol. 4, 631–640 (2003).
Watkins, S. M., Reifsnyder, P. R., Pan, H. J., German, J. B. & Leiter, E. H. Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone. J. Lipid Res. 43, 1809–1817 (2002).
Santagata, S. et al. G-protein signaling through tubby proteins. Science 292, 2041–2050 (2001). Study which shows, based in structural analysis, that tubby proteins bind to phosphoinositides and that cellular stimulation leads to release of tubby from the membrane.
Carroll, K., Gomez, C. & Shapiro, L. Tubby proteins: the plot thickens. Nature Rev. Mol. Cell Biol. 5, 55–63 (2004).
Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P. & Cantley, L. C. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57, 167–175 (1989).
Czech, M. P. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol. 65, 791–815 (2003).
Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).
Pendaries, C., Tronchere, H., Plantavid, M. & Payrastre, B. Phosphoinositide signaling disorders in human diseases. FEBS Lett. 546, 25–31 (2003).
Giannakou, M. E. et al. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305, 361 (2004).
Finan, P. M. & Thomas, M. J. PI 3-kinase inhibition: a therapeutic target for respiratory disease. Biochem. Soc. Trans. 32, 378–382 (2004). Review article which summarizes recent advances in therapeutic targeting of PI-3 kinases
Fruman, D. A. Towards an understanding of isoform specificity in phosphoinositide 3-kinase signalling in lymphocytes. Biochem. Soc. Trans. 32, 315–319 (2004).
Schmid, A. C. & Woscholski, R. Phosphatases as small-molecule targets: inhibiting the endogenous inhibitors of kinases. Biochem. Soc. Trans. 32, 348–349 (2004).
Wetzker, R. & Rommel, C. Phosphoinositide 3-kinases as targets for therapeutic intervention. Curr. Pharm. Des 10, 1915–1922 (2004).
Heinrich, M. et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and-3 activation. Cell Death. Differ. 11, 550–563 (2004).
Bose, R. et al. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82, 405–414 (1995).
Ogretmen, B. & Hannun, Y. A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nature Rev. Cancer 4, 604–616 (2004).
Liu, F. et al. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am. J. Respir. Cell Mol. Biol. 24, 711–719 (2001).
Corda, D., Iurisci, C. & Berrie, C. P. Biological activities and metabolism of the lysophosphoinositides and glycerophosphoinositols. Biochim. Biophys. Acta 1582, 52–69 (2002).
Hideshima, T. et al. Antitumor activity of lysophosphatidic acid acyltransferase-beta inhibitors, a novel class of agents, in multiple myeloma. Cancer Res. 63, 8428–8436 (2003).
Basler, J. W. & Piazza, G. A. Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 selective inhibitors for prostate cancer chemoprevention. J. Urol. 171, S59–S62 (2004).
Cremona, O. & De Camilli, P. Phosphoinositides in membrane traffic at the synapse. J. Cell. Sci. 114, 1041–1052 (2001).
Cutler, R. G. et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 2070–2075 (2004).
Yanagisawa, K., Odaka, A., Suzuki, N. & Ihara, Y. GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer's disease. Nature Med. 1, 1062–1066 (1995).
Perrin, R. J., Woods, W. S., Clayton, D. F. & George, J. M. Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J. Biol. Chem. 276, 41958–41962 (2001).
Sharon, R. et al. The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 37, 583–595 (2003).
Lwin, A., Orvisky, E., Goker-Alpan, O., LaMarca, M. E. & Sidransky, E. Glucocerebrosidase mutations in subjects with parkinsonism. Mol. Genet. Metab 81, 70–73 (2004).
Pentchev, P. G. et al. A defect in cholesterol esterification in Niemann–Pick disease (type C) patients. Proc. Natl Acad. Sci. USA 82, 8247–8251 (1985).
Sturley, S. L., Patterson, M. C., Balch, W. & Liscum, L. The pathophysiology and mechanisms of NP-C disease. Biochim. Biophys. Acta 1685, 83–87 (2004).
Selkoe, D. J. Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nature Cell Biol. 6, 1054–1061 (2004).
Stebbins, C. E. & Galan, J. E. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001).
Walburger, A. et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304, 1800–1804 (2004).
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).
Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197 (1998).
Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).
Gatfield, J. & Pieters, J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288, 1647–1650 (2000).
Ono, A., Ablan, S. D., Lockett, S. J., Nagashima, K. & Freed, E. O. Phosphatidylinositol (4, 5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc. Natl Acad. Sci. USA 101, 14889–14894 (2004).
Lindwasser, O. W. & Resh, M. D. Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J. Virol. 75, 7913–7924 (2001).
Nguyen, D. H. & Hildreth, J. E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 74, 3264–3272 (2000).
Finnegan, C. M. et al. Ceramide, a target for antiretroviral therapy. Proc. Natl Acad. Sci. USA 101, 15452–15457 (2004).
Scheiffele, P., Rietveld, A., Wilk, T. & Simons, K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044 (1999).
Campbell, S. M., Crowe, S. M. & Mak, J. Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity. AIDS 16, 2253–2261 (2002).
Morris-Natschke, S. L., Ishaq, K. S. & Kucera, L. S. Phospholipid analogs against HIV-1 infection and disease. Curr. Pharm. Des. 9, 1441–1451 (2003).
Raulin, J. Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy. Prog. Lipid. Res. 41, 27–65 (2002).
Vergne, I., Chua, J. & Deretic, V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J. Exp. Med. 198, 653–659 (2003).
Rhoades, E. et al. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol. Microbiol. 48, 875–888 (2003).
Fratti, R. A., Chua, J., Vergne, I. & Deretic, V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl Acad. Sci. USA 100, 5437–5442 (2003).
Hernandez, L. D., Hueffer, K., Wenk, M. R. & Galan, J. E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807 (2004).
Converse, S. E. et al. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl Acad. Sci. USA 100, 6121–6126 (2003).
Thompson, C. R. et al. Sphingosine kinase 1 (SK1) is recruited to nascent phagosomes in human macrophages: inhibition of SK1 translocation by Mycobacterium tuberculosis. J. Immunol. 174, 3551–3561 (2005).
Mota, L. J., Journet, L., Sorg, I., Agrain, C. & Cornelis, G. R. Bacterial injectisomes: needle length does matter. Science 307, 1278 (2005).
Vergne, I. et al. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 102, 4033–4038 (2005).
Steele-Mortimer, O. et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J. Biol. Chem. 275, 37718–37724 (2000).
Porcelli, S. et al. Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature 341, 447–450 (1989).
Sieling, P. A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227–230 (1995).
Brigl, M. & Brenner, M. B. CD1: Antigen presentation and T cell function. Annu. Rev. Immunol. 22, 817–890 (2004).
Hava, D. L. et al. CD1 assembly and the formation of CD1-antigen complexes. Curr. Opin. Immunol. 17, 88–94 (2005).
Winau, F. et al. Saposin C is required for lipid presentation by human CD1b. Nature Immunol. 5, 169–174 (2004).
Park, J. J. et al. Lipid-protein interactions: biosynthetic assembly of CD1 with lipids in the endoplasmic reticulum is evolutionarily conserved. Proc. Natl Acad. Sci. USA 101, 1022–1026 (2004).
Han, X. & Gross, R. W. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl Acad. Sci. USA 91, 10635–10639 (1994).
Kim, H. Y., Wang, T. C. & Ma, Y. C. Liquid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal. Chem. 66, 3977–3982 (1994).
Kerwin, J. L., Tuininga, A. R. & Ericsson, L. H. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J. Lipid. Res. 35, 1102–1114 (1994).
Pulfer, M. & Murphy, R. C. Electrospray mass spectrometry of phospholipids. Mass Spectrom. Rev. 22, 332–364 (2003). Excellent methodological overview of LC and MS based approaches for lipid analysis.
Han, X. & Gross, R. W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI/MS: a bridge to lipidomics. J. Lipid. Res. 44, 1071–1079 (2003).
Welti, R. & Wang, X. Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr. Opin. Plant Biol. 7, 337–344 (2004).
Brugger, B., Erben, G., Sandhoff, R., Wieland, F. T. & Lehmann, W. D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl Acad. Sci. USA 94, 2339–2344 (1997). Landmark publication demonstrating substantially improved sensitivity for analysis of phospholipids in complex mixtures based on nanoflow ESI MS.
Sullards, M. C. & Merrill, A. H., Jr. Analysis of sphingosine 1-phosphate, ceramides, and other bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Sci STKE PL1 (2001).
Han, X. & Gross, R. W. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal. Biochem. 295, 88–100 (2001).
Ivanova, P. T. et al. Electrospray ionization mass spectrometry analysis of changes in phospholipids in RBL-2H3 mastocytoma cells during degranulation. Proc. Natl Acad. Sci. USA 98, 7152–7157 (2001).
Han, X., Yang, J., Cheng, H., Ye, H. & Gross, R. W. Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal. Biochem. 330, 317–331 (2004).
Ekroos, K., Chernushevich, I. V., Simons, K. & Shevchenko, A. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal. Chem. 74, 941–949 (2002).
Schaub, T. M., Hendrickson, C. L., Qian, K., Quinn, J. P. & Marshall, A. G. High-resolution field desorption/ionization fourier transform ion cyclotron resonance mass analysis of nonpolar molecules. Anal. Chem. 75, 2172–2176 (2003).
Wenk, M. R. et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nature Biotechnol. 21, 813–817 (2003).
Han, X. Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal. Biochem. 302, 199–212 (2002).
Ivleva, V. B. et al. Coupling thin-layer chromatography with vibrational cooling matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for the analysis of ganglioside mixtures. Anal. Chem. 76, 6484–6491 (2004).
Welti, R. et al. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 277, 31994–32002 (2002).
Koivusalo, M., Haimi, P., Heikinheimo, L., Kostiainen, R. & Somerharju, P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid. Res. 42, 663–672 (2001).
Petkovic, M. et al. Detection of individual phospholipids in lipid mixtures by matrix- assisted laser desorption/ionization time-of-flight mass spectrometry: phosphatidylcholine prevents the detection of further species. Anal. Biochem. 289, 202–216 (2001).
Muller, M. et al. Limits for the detection of (poly-)phosphoinositides by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI- TOF MS). Chem. Phys. Lipids 110, 151–164 (2001).
Houjou, T., Yamatani, K., Imagawa, M., Shimizu, T. & Taguchi, R. A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 654–666 (2005).
Hermansson, M., Uphoff, A., Kakela, R. & Somerharju, P. Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal. Chem. 77, 2166–2175 (2005).
Watkins, S. M. Lipomic profiling in drug discovery, development and clinical trial evaluation. Curr. Opin. Drug Discov. Devel. 7, 112–117 (2004).
Picchioni, G. A., Watada, A. E. & Whitaker, B. D. Quantitative high-performance liquid chromatography analysis of plant phospholipids and glycolipids using light-scattering detection. Lipids 31, 217–221 (1996).
Nasuhoglu, C. et al. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. Anal. Biochem. 301, 243–254 (2002).
Lin, S., Fischl, A. S., Bi, X. & Parce, W. Separation of phospholipids in microfluidic chip device: application to high-throughput screening assays for lipid-modifying enzymes. Anal. Biochem. 314, 97–107 (2003).
Qi, L., Danielson, N. D., Dai, Q. & Lee, R. M. Capillary electrophoresis of cardiolipin with on-line dye interaction and spectrophotometric detection. Electrophoresis 24, 1680–1686 (2003).
German, J. B., Roberts, M. A. & Watkins, S. M. Personal metabolomics as a next generation nutritional assessment. J. Nutr. 133, 4260–4266 (2003).
Adams, A. & Kingsbury, J. Lipomic profiling, profiled. Modern Drug Discov. 55–56 (2004).
Seelig, A. & Seelig, J. Effect of a single cis double bond on the structures of a phospholipid bilayer. Biochemistry 16, 45–50 (1977).
Gawrisch, K., Eldho, N. V. & Polozov, I. V. Novel NMR tools to study structure and dynamics of biomembranes. Chem. Phys. Lipids 116, 135–151 (2002).
Marsh, D. & Pali, T. The protein-lipid interface: perspectives from magnetic resonance and crystal structures. Biochim. Biophys. Acta 1666, 118–141 (2004).
Marsh, D. & Barrantes, F. J. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc. Natl Acad. Sci. USA 75, 4329–4333 (1978).
Hilgemann, D. W., Feng, S. & Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE. RE19 (2001).
Fu, R. & Cross, T. A. Solid-state nuclear magnetic resonance investigation of protein and polypeptide structure. Annu. Rev. Biophys. Biomol. Struct. 28, 235–268 (1999).
Gavaghan, C. L., Holmes, E., Lenz, E., Wilson, I. D. & Nicholson, J. K. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett. 484, 169–174 (2000).
Nicholson, J. K. & Wilson, I. D. Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nature Rev. Drug Discov. 2, 668–676 (2003).
Prestwich, G. D. Phosphoinositide signaling; from affinity probes to pharmaceutical targets. Chem. Biol. 11, 619–637 (2004).
Taylor, G. S. & Dixon, J. E. Assaying phosphoinositide phosphatases. Methods Mol. Biol. 284, 217–228 (2004).
Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001). Identification of lipid binding proteins using arrays of immobilized protein.
Mukherjee, S. & Maxfield, F. R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203–211 (2000).
Kol, M. A., de Kroon, A. I., Killian, J. A. & de, K. B. Transbilayer movement of phospholipids in biogenic membranes. Biochemistry 43, 2673–2681 (2004).
Wenk, M. R. & De Camilli, P. Assembly of endocytosis-associated proteins on liposomes. Meth. Enzymol. 372, 248–260 (2003).
Krugmann, S. et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell 9, 95–108 (2002). Biochemical work based on affinity chromatography using immobilized lipids as baits for the identification of novel lipid binding proteins.
Kolusheva, S., Boyer, L. & Jelinek, R. A colorimetric assay for rapid screening of antimicrobial peptides. Nature Biotechnol. 18, 225–227 (2000).
Botelho, R. J. et al. Localized biphasic changes in phosphatidylinositol-4, 5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1368 (2000). Elegant cell biological study, using fluorescent methods, of phosphoinositide and DG metabolism during phagocytosis.
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
Folch, J., Ascoli, I., Lees, M., Meath, J. A. & Le, B. N. Preparation of lipide extracts from brain tissue. J. Biol. Chem. 191, 833–841 (1951).
Wenk, M. R. & De Camilli, P. in Functional Lipidomics (eds. Feng, L. & Prestwich, G. D.) (Dekker-CRC, New York, in the press).
Fahy, E. et al. A comprehensive classification system for lipids. J. Lipid Res. 46, 839–862 (2005). Comprehensive classification scheme for lipids which will help facilitate exchange of information and databasing of large amounts of lipidomic data.
Forrester, J. S., Milne, S. B., Ivanova, P. T. & Brown, H. A. Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol. Pharmacol. 65, 813–821 (2004).
Lu, Y., Hong, S., Tjonahen, E. & Serhan, C. N. Mediator-lipidomics: databases and search algorithms for PUFA-derived mediators. J. Lipid Res. 46, 790–802 (2005). Novel algorithms and databases for the identification of lipid mediators based on mass spectrometry and UV spectroscopy.
varez-Vasquez, F. et al. Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae. Nature 433, 425–430 (2005).
Vance, D. E. & Vance, J. E. (eds) Biochemistry of Lipids, Lipoproteins and Membranes (Elsevier, New York, 2001).
Lemmon, M. A. Pleckstrin homology domains: not just for phosphoinositides. Biochem. Soc. Trans. 32, 707–711 (2004).
Weckwerth, W., Loureiro, M. E., Wenzel, K. & Fiehn, O. Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl Acad. Sci. USA 101, 7809–7814 (2004).
Cascante, M. et al. Metabolic control analysis in drug discovery and disease. Nature Biotechnol. 20, 243–249 (2002).
Hodgkin, M. N. et al. Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? Trends Biochem. Sci. 23, 200–204 (1998).
Gronert, K. et al. A molecular defect in intracellular lipid signaling in human neutrophils in localized aggressive periodontal tissue damage. J. Immunol. 172, 1856–1861 (2004).
Kroesen, B. J. et al. Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J. Biol. Chem. 276, 13606–13614 (2001).
Koybasi, S. et al. Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas. J. Biol. Chem. 279, 44311–44319 (2004).
Alaimo, P. J., Shogren-Knaak, M. A. & Shokat, K. M. Chemical genetic approaches for the elucidation of signaling pathways. Curr. Opin. Chem. Biol. 5, 360–367 (2001).
Zewail, A. et al. Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin. Proc. Natl Acad. Sci. USA 100, 3345–3350 (2003). Chemogenetic screen using yeast knock-out libraries and a kinase inhibitor.
Boshoff, H. I. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184 (2004).
Moody, D. B. et al. T cell activation by lipopeptide antigens. Science 303, 527–531 (2004). Recent report in a series of papers which demonstrates that CD1a receptor present lipid molecules (a lipopetide in this case) during T cell activation.
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).
Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992). Discovery based on biochemical binding experiment and analytical chemistry of an endogenous ligand, anandamide, for the cannabinoid receptor
Hamman, B. D., Pollok, B. A., Bennett, T., Allen, J. & Heim, R. Binding of a Pleckstrin homology domain protein to phosphoinositide in membranes: a miniaturized FRET-based assay for drug screening. J. Biomol. Screen. 7, 45–55 (2002).
Gray, A., Olsson, H., Batty, I. H., Priganica, L. & Peter Downes, C. Nonradioactive methods for the assay of phosphoinositide 3-kinases and phosphoinositide phosphatases and selective detection of signaling lipids in cell and tissue extracts. Anal. Biochem. 313, 234–245 (2003).
Saghatelian, A. et al. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43, 14332–14339 (2004).
Cicchetti, G., Biernacki, M., Farquharson, J. & Allen, P. G. A ratiometric expressible FRET sensor for phosphoinositides displays a signal change in highly dynamic membrane structures in fibroblasts. Biochemistry 43, 1939–1949 (2004).
Tanimura, A., Nezu, A., Morita, T., Turner, R. J. & Tojyo, Y. Fluorescent biosensor for quantitative real-time measurements of inositol 1, 4, 5-trisphosphate in single living cells. J. Biol. Chem. 279, 38095–38098 (2004).
Nieland, T. J. et al. Chemical genetic screening identifies sulfonamides that raise organellar pH and interfere with membrane traffic. Traffic. 5, 478–492 (2004).
Rudolf, M. T., Dinkel, C., Traynor-Kaplan, A. E. & Schultz, C. Antagonists of myo-inositol 3, 4, 5, 6-tetrakisphosphate allow repeated epithelial chloride secretion. Bioorg. Med. Chem. 11, 3315–3329 (2003).
Saiardi, A., Bhandari, R., Resnick, A. C., Snowman, A. M. & Snyder, S. H. Phosphorylation of proteins by inositol pyrophosphates. Science 306, 2101–2105 (2004).
Andresen, T. L., Davidsen, J., Begtrup, M., Mouritsen, O. G. & Jorgensen, K. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J. Med. Chem. 47, 1694–1703 (2004).
Chithalen, J. V., Luu, L., Petkovich, M. & Jones, G. HPLC-MS/MS analysis of the products generated from all-trans-retinoic acid using recombinant human CYP26A. J. Lipid Res. 43, 1133–1142 (2002).
Butterfield, D. A. Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review. Free Radic. Res. 36, 1307–1313 (2002).
Montine, K. S. et al. Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem. Phys. Lipids 128, 117–124 (2004).
Basu, S., Whiteman, M., Mattey, D. L. & Halliwell, B. Raised levels of F(2)-isoprostanes and prostaglandin F(2alpha) in different rheumatic diseases. Ann. Rheum. Dis. 60, 627–631 (2001).
Spickett, C. M., Pitt, A. R. & Brown, A. J. Direct observation of lipid hydroperoxides in phospholipid vesicles by electrospray mass spectrometry. Free Radic. Biol. Med. 25, 613–620 (1998).
Ishida, M. et al. High-resolution analysis by nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for the identification of molecular species of phospholipids and their oxidized metabolites. Rapid Commun. Mass Spectrom. 18, 2486–2494 (2004).
Leitinger, N. et al. Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc. Natl Acad. Sci. USA 96, 12010–12015 (1999).
Lutter, M. et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nature Cell Biol. 2, 754–761 (2000).
Kagan, V. E. et al. A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J. Immunol. 169, 487–499 (2002).
Bannenberg, G. L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174, 4345–4355 (2005).
Pravdova, V., Walczak, B. & Massart, D. L. A comparison of two algorithms for warping of analytical signals. Anal. Chim. Acta 456, 77–92 (2002).
Weckwerth, W. Metabolomics in systems biology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 54, 669–689 (2003).
McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).
Barrantes, F. J. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res. Brain Res. Rev. 47, 71–95 (2004).