The elusive importance of being a mitochondrial Ca2+ uniporter
Tài liệu tham khảo
McCormack, 1990, The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues, Biochim. Biophys. Acta, 1018, 287, 10.1016/0005-2728(90)90269-A
Pizzo, 2012, Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities, Pflugers Arch., 464, 3, 10.1007/s00424-012-1122-y
Drago, 2011, After half a century mitochondrial calcium in- and efflux machineries reveal themselves, EMBO J., 30, 4119, 10.1038/emboj.2011.337
Rizzuto, 2006, Microdomains of intracellular Ca2+: molecular determinants and functional consequences, Physiol. Rev., 86, 369, 10.1152/physrev.00004.2005
Contreras, 2010, Mitochondria: the calcium connection, Biochim. Biophys. Acta, 1797, 607, 10.1016/j.bbabio.2010.05.005
Nicholls, 2005, Mitochondria and calcium signaling, Cell Calcium, 38, 311, 10.1016/j.ceca.2005.06.011
Palty, 2012, The mitochondrial Na(+)/Ca(2+) exchanger, Cell Calcium, 52, 9, 10.1016/j.ceca.2012.02.010
Marchi, 2013, The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications, J. Physiol.
Bragadin, 1979, Activation energies and enthalpies during Ca2+ transport in rat liver mitochondria, FEBS Lett., 104, 347, 10.1016/0014-5793(79)80849-2
Kirichok, 2004, The mitochondrial calcium uniporter is a highly selective ion channel, Nature, 427, 360, 10.1038/nature02246
De Stefani, 2011, A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter, Nature, 336, 10.1038/nature10230
Baughman, 2011, Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter, Nature, 476, 341, 10.1038/nature10234
Raffaello, 2013, The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit, EMBO J., 32, 2362, 10.1038/emboj.2013.157
Perocchi, 2010, MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake, Nature, 467, 291, 10.1038/nature09358
Plovanich, 2013, MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling, PLOS ONE, 8, e55785, 10.1371/journal.pone.0055785
Mallilankaraman, 2012, MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism, Nat. Cell Biol., 14, 1336, 10.1038/ncb2622
Sancak, 2013, EMRE is an essential component of the mitochondrial calcium uniporter complex, Science, 342, 1379, 10.1126/science.1242993
Pozzan, 1994, Molecular and cellular physiology of intracellular calcium stores, Physiol. Rev., 74, 595, 10.1152/physrev.1994.74.3.595
Rizzuto, 2000, Mitochondria as all-round players of the calcium game, J. Physiol., 529, 37, 10.1111/j.1469-7793.2000.00037.x
Clapham, 2007, Calcium signaling, Cell, 131, 1047, 10.1016/j.cell.2007.11.028
Pan, 2013, The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter, Nat. Cell Biol., 15, 1464, 10.1038/ncb2868
Carafoli, 1971, A survey of the interaction of calcium ions with mitochondria from different tissues and species, Biochem. J., 122, 681, 10.1042/bj1220681
Trenker, 2007, Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport, Nat. Cell Biol., 9, 445, 10.1038/ncb1556
Nicholls, 1999, A history of the first uncoupling protein, UCP1, J. Bioenerg. Biomembr., 31, 399, 10.1023/A:1005436121005
Ricquier, 2000, The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP, Biochem. J., 345, 161, 10.1042/bj3450161
Brookes, 2008, UCPs – unlikely calcium porters, Nat. Cell Biol., 10, 1235, 10.1038/ncb1108-1235
Jiang, 2009, Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter, Science, 326, 144, 10.1126/science.1175145
Nowikovsky, 2004, The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf–Hirschhorn syndrome, J. Biol. Chem., 279, 30307, 10.1074/jbc.M403607200
Jiang, 2013, Letm1, the mitochondrial Ca2+/H+ antiporter, is essential for normal glucose metabolism and alters brain function in Wolf–Hirschhorn syndrome, Proc. Natl. Acad. Sci. U. S. A., 110, E2249, 10.1073/pnas.1308558110
Tsai, 2014, Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1, J. Gen. Physiol., 143, 67, 10.1085/jgp.201311096
Froschauer, 2005, Electroneutral K+/H+ exchange in mitochondrial membrane vesicles involves Yol027/Letm1 proteins, Biochim. Biophys. Acta, 1711, 41, 10.1016/j.bbamem.2005.02.018
McQuibban, 2010, A Drosophila mutant of LETM1, a candidate gene for seizures in Wolf–Hirschhorn syndrome, Hum. Mol. Genet., 987, 10.1093/hmg/ddp563
Nowikovsky, 2012, Perspectives on: SGP symposium on mitochondrial physiology and medicine: the pathophysiology of LETM1, J. Gen. Physiol., 139, 445, 10.1085/jgp.201110757
Falk, 2012, Mitochondrial disease genetic diagnostics: optimized whole-exome analysis for all MitoCarta nuclear genes and the mitochondrial genome, Discov. Med., 14, 389
Chaudhuri, 2013, MCU encodes the pore conducting mitochondrial calcium currents, eLife, 2, e00704, 10.7554/eLife.00704
Bick, 2012, Evolutionary diversity of the mitochondrial calcium uniporter, Science, 336, 886, 10.1126/science.1214977
Abell, 2011, Parallel adaptive feedback enhances reliability of the Ca2+ signaling system, Proc. Natl. Acad. Sci. U. S. A., 108, 14485, 10.1073/pnas.1018266108
Mallilankaraman, 2012, MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival, Cell, 151, 630, 10.1016/j.cell.2012.10.011
Csordas, 2013, MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter, Cell Metab., 17, 976, 10.1016/j.cmet.2013.04.020
de la Fuente, 2013, Dynamics of mitochondrial Ca2+ uptake in MICU1-knockdown cells, Biochem. J., 33
Hoffman, 2013, MICU1 motifs define mitochondrial calcium uniporter binding and activity, Cell Rep., 5, 1576, 10.1016/j.celrep.2013.11.026
Patron, 2014, MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effect on MCU activity, Mol. Cell, 10.1016/j.molcel.2014.01.013
Fieni, 2012, Activity of the mitochondrial calcium uniporter varies greatly between tissues, Nat. Commun., 3, 1317, 10.1038/ncomms2325
Sickmann, 2003, The proteome of Saccharomyces cerevisiae mitochondria, Proc. Natl. Acad. Sci. U. S. A., 100, 13207, 10.1073/pnas.2135385100
Prudent, 2013, Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish, Nat. Commun., 4, 2330, 10.1038/ncomms3330
Jean-Quartier, 2012, Studying mitochondrial Ca(2+) uptake – a revisit, Mol. Cell. Endocrinol., 353, 114, 10.1016/j.mce.2011.10.033
Bondarenko, 2013, Characterization of distinct single-channel properties of Ca(2)(+) inward currents in mitochondria, Pflugers Arch., 465, 997, 10.1007/s00424-013-1224-1
Basso, 2005, Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D, J. Biol. Chem., 280, 18558, 10.1074/jbc.C500089200
Logan, 2013, Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling, Nat. Genet., 188
Steeghs, 1997, Use of gene targeting for compromising energy homeostasis in neuro-muscular tissues: the role of sarcomeric mitochondrial creatine kinase, J. Neurosci. Methods, 71, 29, 10.1016/S0165-0270(96)00124-0
Horai, 1998, Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion, J. Exp. Med., 187, 1463, 10.1084/jem.187.9.1463
Garry, 1998, Mice without myoglobin, Nature, 395, 905, 10.1038/27681
Mammen, 2003, Hypoxia-induced left ventricular dysfunction in myoglobin-deficient mice, Am. J. Physiol. Heart Circ. Physiol., 285, H2132, 10.1152/ajpheart.00147.2003
Molojavyi, 2010, Myoglobin-deficient mice activate a distinct cardiac gene expression program in response to isoproterenol-induced hypertrophy, Physiol. Genomics, 41, 137, 10.1152/physiolgenomics.90297.2008
Schlieper, 2004, Adaptation of the myoglobin knockout mouse to hypoxic stress, Am. J. Physiol. Regul. Integr. Comp. Physiol., 286, R786, 10.1152/ajpregu.00043.2003
Grange, 2001, Functional and molecular adaptations in skeletal muscle of myoglobin-mutant mice, Am. J. Physiol. Cell Physiol., 281, C1487, 10.1152/ajpcell.2001.281.5.C1487
Meeson, 2001, Adaptive mechanisms that preserve cardiac function in mice without myoglobin, Circ. Res., 88, 713, 10.1161/hh0701.089753
Godecke, 1999, Disruption of myoglobin in mice induces multiple compensatory mechanisms, Proc. Natl. Acad. Sci. U. S. A., 96, 10495, 10.1073/pnas.96.18.10495