The effects of visualization on judgment and decision-making: a systematic literature review

Karin Eberhard1
1Chair of Strategic and International Management, Philipps-University Marburg, Universitätsstr. 24, 35037, Marburg, Germany

Tóm tắt

AbstractThe visualization of information is a widely used tool to improve comprehension and, ultimately, decision-making in strategic management decisions as well as in a diverse array of other domains. Across social science research, many findings have supported this rationale. However, empirical results vary significantly in terms of the variables and mechanisms studied as well as their resulting conclusion. Despite the ubiquity of information visualization with modern software, there is little effort to create a comprehensive understanding of the powers and limitations of its use. The purpose of this article is therefore to review, systematize, and integrate extant research on the effects of information visualization on decision-making and to provide a future research agenda with a particular focus on the context of strategic management decisions. The study shows that information visualization can improve decision quality as well as speed, with more mixed effects on other variables, for instance, decision confidence. Several moderators such as user and task characteristics have been investigated as part of this interaction, along with cognitive aspects as mediating processes. The article presents integrative insights based on research spanning multiple domains across the social and information sciences and provides impulses for prospective applications in the realm of managerial decision-making.

Từ khóa


Tài liệu tham khảo

Aerts JC, Clarke KC, Keuper AD (2003) Testing popular visualization techniques for representing model uncertainty. Cartogr Geogr Inf Sci 30:249–261. https://doi.org/10.1559/152304003100011180

Ajayi O (2014) Interactive data visualization in accounting contexts: impact on user attitudes, information processing, and decision outcomes. University of Central Florida

Alfred KL, Kraemer DJ (2017) Verbal and visual cognition: Individual differences in the lab, in the brain, and in the classroom. Dev Neuropsychol 42:507–520. https://doi.org/10.1080/87565641.2017.1401075

Alhadad SSJ (2018) Visualizing data to support judgement, inference, and decision making in learning analytics: insights from cognitive psychology and visualization science. J Learn Anal 5:60–85. https://doi.org/10.18608/jla.2018.52.5

Allen PM, Edwards JA, Snyder FJ et al (2014) The effect of cognitive load on decision making with graphically displayed uncertainty information. Risk Anal 34:1495–1505. https://doi.org/10.1111/risa.12161

Amer TS (2005) Bias due to visual illusion in the graphical presentation of accounting information. J Inf Syst 19:1–18. https://doi.org/10.2308/jis.2005.19.1.1

Amer TS, Ravindran S (2010) The effect of visual illusions on the graphical display of information. J Inf Syst 24:23–42. https://doi.org/10.2308/jis.2010.24.1.23

Anderson EW, Potter KC, Matzen LE et al (2011) A user study of visualization effectiveness using EEG and cognitive load. Comput Graph Forum 30:791–800. https://doi.org/10.1111/j.1467-8659.2011.01928.x

Andrade EB (2011) Excessive confidence in visually-based estimates. Organ Behav Hum Decis Process 116:252–261. https://doi.org/10.1016/j.obhdp.2011.07.002

Arshad SZ, Zhou J, Bridon C et al (2015) Investigating user confidence for uncertainty presentation in predictive decision making. In: Proceedings of the annual meeting of the Australian special interest group for computer human interaction, pp 352–360

Artacho-Ramírez MA, Diego-Mas JA, Alcaide-Marzal J (2008) Influence of the mode of graphical representation on the perception of product aesthetic and emotional features: an exploratory study. Int J Ind Ergon 38:942–952. https://doi.org/10.1016/j.ergon.2008.02.020

Arunachalam V, Pei BKW, Steinbart PJ (2002) Impression management with graphs: effects on choices. J Inf Syst 16:183–202. https://doi.org/10.2308/jis.2002.16.2.183

Arunachalam D, Kumar N, Kawalek JP (2018) Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. Transp Res Part E Logist Transp Rev 114:416–436. https://doi.org/10.1016/j.tre.2017.04.001

Bajracharya S, Carenini G, Chen K et al (2014) Interactive visualization for group decision analysis. Int J Inf Technol Decis Mak 17:1839–1864. https://doi.org/10.1142/s0219622018500384

Ballard A (2020) Promoting performance information use through data visualization: evidence from an experiment. Public Perform Manag Rev 43:109–128. https://doi.org/10.1080/15309576.2019.1592763

Beattie V, Jones MJ (1992) The use and abuse of graphs in annual reports: theoretical framework and empirical study. Account Bus Res 22:291–303

Beattie VA, Jones MJ (2000) Changing graph use in corporate annual reports: a time-series analysis. Contemp Account Res 17:213–226. https://doi.org/10.1506/aat8-3cgl-3j94-ph4f

Beattie V, Jones MJ (2002a) Measurement distortion of graphs in corporate reports: an experimental study. Account Audit Account J. https://doi.org/10.1108/09513570210440595

Beattie V, Jones MJ (2002b) The impact of graph slope on rate of change judgments in corporate reports. Abacus 38:177–199. https://doi.org/10.1111/1467-6281.00104

Beattie V, Jones M (2008) Corporate reporting using graphs: a review and synthesis. J Account Lit 27:71–110

Binder K, Krauss S, Bruckmaier G (2015) Effects of visualizing statistical information—an empirical study on tree diagrams and 2 × 2 tables. Front Psychol. https://doi.org/10.3389/fpsyg.2015.01186

Block G (2013) Reducing cognitive load using adaptive uncertainty visualization. Nova Southeastern University

Breslow LA, Trafton JG, Ratwani RM (2009) A perceptual process approach to selecting color scales for complex visualizations. J Exp Psychol Appl 15:25–34. https://doi.org/10.1037/a0015085

Brodlie K, Osorio RA, Lopes A (2012) A review of uncertainty in data visualization. In: Expanding the frontiers of visual analytics and visualization. Springer, pp 81–109

Bruckmaier G, Binder K, Krauss S, Kufner H-M (2019) An eye-tracking study of statistical reasoning with tree diagrams and 2 × 2 tables. Front Psychol. https://doi.org/10.3389/fpsyg.2019.00632

Brusilovsky P, Ahn J, Rasmussen E (2010) Teaching Information Retrieval With Web-based Interactive Visualization. J Educ Libr Inf Sci 51:187–200

Butavicius MA, Lee MD (2007) An empirical evaluation of four data visualization techniques for displaying short news text similarities. Int J Hum-Comput Stud 65:931–944. https://doi.org/10.1016/j.ijhcs.2007.07.001

Cardoso RL, de Leite R, O, Aquino ACB de, (2018) The effect of cognitive reflection on the efficacy of impression management. Account Audit Account J 31:1668–1690. https://doi.org/10.1108/aaaj-10-2016-2731

Carey JM, White EM (1991) The effects of graphical versus numerical response on the accuracy of graph-based forecasts. J Manag 17:77. https://doi.org/10.1177/014920639101700106

Cassenti DN, Roy H, Kase SE (2019) Cognitive processing of visually presented data in decision making. Hum Factors 61:78–89. https://doi.org/10.1177/0018720818796009

Chan SY (2001) The use of graphs as decision aids in relation to information overload and managerial decision quality. J Inf Sci 27:417. https://doi.org/10.1177/016555150102700607

Chandar N, Collier D, Miranti P (2012) Graph standardization and management accounting at AT&T during the 1920s. Account Hist 17:35–62. https://doi.org/10.1177/1032373211424889

Chandler P, Sweller J (1991) Cognitive load theory and the format of instruction. Cogn Instr 8:293–332. https://doi.org/10.1207/s1532690xci0804_2

Chen G, Crossland C, Luo S (2015) Making the same mistake all over again: CEO overconfidence and corporate resistance to corrective feedback. Strateg Manag J 36:1513–1535. https://doi.org/10.1002/smj.2291

Chen J, Wang M, Grotzer TA, Dede C (2018) Using a three-dimensional thinking graph to support inquiry learning. J Res Sci Teach 55:1239–1263. https://doi.org/10.1002/tea.21450

Cho CH, Michelon G, Patten DM (2012a) Impression management in sustainability reports: an empirical investigation of the use of graphs. Account Public Interest 12:16–37

Cho CH, Michelon G, Patten DM (2012b) Enhancement and obfuscation through the use of graphs in sustainability reports. Sustain Account Manag Policy J 3:74–88. https://doi.org/10.1108/20408021211223561

Clark WR, Clark LA, Raffo DM, Williams RI (2021) Extending Fisch and Block’s (2018) tips for a systematic review in management and business literature. Manag Rev Q 71:215–231. https://doi.org/10.1007/s11301-020-00184-8

Coll RA, Coll JH, Thakur G (1994) Graphs and tables: a four-factor experiment. Commun ACM 37:77–86. https://doi.org/10.1145/175276.175283

Conati C, Carenini G, Hoque E et al (2014) Evaluating the impact of user characteristics and different layouts on an interactive visualization for decision making. Comput Graph Forum 33:371–380. https://doi.org/10.1111/cgf.12393

Conati C, Maclaren H (2008) Exploring the role of individual differences in information visualization, pp 199–206

Cornelius B, Wagner U, Natter M (2010) Managerial applicability of graphical formats to support positioning decisions. J Für Betriebswirtschaft 60:167–201. https://doi.org/10.1007/s11301-010-0061-y

Correll M, Gleicher M (2014) Error bars considered harmful: exploring alternate encodings for mean and error. IEEE Trans vis Comput Graph 20:2142–2151. https://doi.org/10.1109/tvcg.2014.2346298

Dambacher M, Haffke P, Groß D, Hübner R (2016) Graphs versus numbers: how information format affects risk aversion in gambling. Judgm Decis Mak 11:223–242

Daron JD, Lorenz S, Wolski P et al (2015) Interpreting climate data visualisations to inform adaptation decisions. Clim Risk Manag 10:17–26. https://doi.org/10.1016/j.crm.2015.06.007

Davis W (1986) The origins of image making. Curr Anthropol 27:193–215. https://doi.org/10.1086/203422

Dean JW, Sharfman MP (1996) Does decision process matter? A study of strategic decision-making effectiveness. Acad Manage J 39:368–392. https://doi.org/10.5465/256784

DeSanctis G (1984) Computer graphics as decision aids: directions for research. Decis Sci 15:463–487. https://doi.org/10.1111/j.1540-5915.1984.tb01236.x

Diacon S, Hasseldine J (2007) Framing effects and risk perception: the effect of prior performance presentation format on investment fund choice. J Econ Psychol 28:31–52

Diamond L, Lerch FJ (1992) Fading frames: data presentation and framing effects. Decis Sci 23:1050–1071. https://doi.org/10.1111/j.1540-5915.1992.tb00435.x

Dilla WN, Janvrin DJ (2010) Voluntary disclosure in annual reports: the association between magnitude and direction of change in corporate financial performance and graph use. Account Horiz 24:257–278. https://doi.org/10.2308/acch.2010.24.2.257

Dilla WN, Steinbart PJ (2005) Using information display characteristics to provide decision guidance in a choice task under conditions of strict uncertainty. J Inf Syst 19:29–55. https://doi.org/10.2308/jis.2005.19.2.29

Dong X, Hayes CC (2012) Uncertainty visualizations: helping decision makers become more aware of uncertainty and its implications. J Cogn Eng Decis Mak 6:30–56. https://doi.org/10.1177/1555343411432338

Dori YJ, Belcher J (2005) How does technology-enabled active learning affect undergraduate students’ understanding of electromagnetism concepts? J Learn Sci 14:243–279. https://doi.org/10.1207/s15327809jls1402_3

Dull RB, Tegarden DP (1999) A comparison of three visual representations of complex multidimensional accounting information. J Inf Syst 13:117. https://doi.org/10.2308/jis.1999.13.2.117

Edwards JA, Snyder FJ, Allen PM et al (2012) Decision making for risk management: a comparison of graphical methods for presenting quantitative uncertainty. Risk Anal Int J 32:2055–2070. https://doi.org/10.1111/j.1539-6924.2012.01839.x

Eppler MJ, Aeschimann M (2009) A systematic framework for risk visualization in risk management and communication. Risk Manage 11:67–89. https://doi.org/10.1057/rm.2009.4

Fabrikant SI, Hespanha SR, Hegarty M (2010) Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Ann Assoc Am Geogr 100:13–29. https://doi.org/10.1080/00045600903362378

Falschlunger L, Eisl C, Losbichler H, Greil A (eds) (2014) Improving information perception of graphical displays – an experimental study on the display of column graphs. In: Proceedings from the 22th international conference in central europe on computer graphics, visualization and computer vision. Vaclav Skala - Union Agency

Falschlunger L, Eisl C, Losbichler H, Grabmann E (eds) (2015a) Report optimization using visual search strategies - an experimental study with eye tracking technology. In: 6th international conference on information visualization theory and applications

Falschlunger L, Eisl C, Losbichler H, Greil AM (2015b) Impression management in annual reports of the largest European companies. J Appl Account Res 16:383–399. https://doi.org/10.1108/jaar-10-2014-0109

Falschlunger L, Grabmann E et al (eds) (2015c) Deriving a holistic cognitive fit model for an optimal visualization of data for management decisions. Seville, Spain

Fisch C, Block J (2018) Six tips for your (systematic) literature review in business and management research. Manag Rev Q 68:103–106. https://doi.org/10.1007/s11301-018-0142-x

Fischer MH (2000) Do irrelevant depth cues affect the comprehension of bar graphs? Appl Cogn Psychol 14:151–162. https://doi.org/10.1002/(SICI)1099-0720(200003/04)14:2%3c151::AID-ACP629%3e3.0.CO;2-Z

Fischer MH, Dewulf N, Hill RL (2005) Designing bar graphs: orientation matters. Appl Cogn Psychol 19:953–962. https://doi.org/10.1002/acp.1105

Géryk J (2017) Visual analytics of educational time-dependent data using interactive dynamic visualization. Expert Syst Int J Knowl Eng Neural Netw. https://doi.org/10.1111/exsy.12175

Gkiouzepas L, Hogg MK (2011) Articulating a new framework for visual metaphors in advertising: a structural, conceptual, and pragmatic investigation. J Advert 40:103–120. https://doi.org/10.2753/joa0091-3367400107

Gooding DC (2006) Visual cognition: where cognition and culture meet. Philos Sci 73:688–698. https://doi.org/10.1086/518523

Gusenbauer M, Haddaway NR (2020) Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res Synth Methods 11:181–217. https://doi.org/10.1002/jrsm.1378

Hambrick DC (2007) Upper echelons theory: an update. Academy of Management Briarcliff Manor, NY, p 10510

Harrison L (2013) The role of emotion in visualization. Doctoral thesis, University of North Carolinab

Hegarty M (2013) Cognition, metacognition, and the design of maps. Curr Dir Psychol Sci 22:3–9. https://doi.org/10.1177/0963721412469395

Hellmann A, Yeow C, De Mello L (2017) The influence of textual presentation order and graphical presentation on the judgements of non-professional investors. Account Bus Res 47:455–470. https://doi.org/10.1080/00014788.2016.1271737

Hilton NZ, Ham E, Nunes KL et al (2017) Using graphs to improve violence risk communication. Crim Justice Behav 44:678–694. https://doi.org/10.1177/0093854816668916

Hirsch B, Seubert A, Sohn M (2015) Visualisation of data in management accounting reports. J Appl Account Res. https://doi.org/10.1108/jaar-08-2012-0059

Hodgkinson GP, Bown NJ, Maule AJ et al (1999) Breaking the frame: an analysis of strategic cognition and decision making under uncertainty. Strateg Manag J 20:977–985. https://doi.org/10.1002/(SICI)1097-0266(199910)20:10%3c977::AID-SMJ58%3e3.0.CO;2-X

Honda H, Ogawa M, Murakoshi T et al (2015) Effect of visual aids and individual differences of cognitive traits in judgments on food safety. Food Policy 55:33. https://doi.org/10.1016/j.foodpol.2015.05.010

Huang W, Eades P (2005) How people read graphs. Australian Computer Society Inc, London, pp 51–58

Huestegge L, Pötzsch TH (2018) Integration processes during frequency graph comprehension: performance and eye movements while processing tree maps versus pie charts. Appl Cogn Psychol 32:200–216. https://doi.org/10.1002/acp.3396

Hutchinson JW, Alba JW, Eisenstein EM (2010) Heuristics and biases in data-based decision making: effects of experience, training, and graphical data displays. J Mark Res 47:627–642. https://doi.org/10.1509/jmkr.47.4.627

Jolicœur P, Dell’Acqua R (1999) Attentional and structural constraints on visual encoding. Psychol Res 62:154–164. https://doi.org/10.1007/s004260050048

Jones MJ (2011) The nature, use and impression management of graphs in social and environmental accounting. Account Forum 35:75–89. https://doi.org/10.1016/j.accfor.2011.03.002

Keahey TA (2013) Using visualization to understand big data. IBM Soft Bus Anal Adv Visu

King WC Jr, Dent MM, Miles EW (1991) The persuasive effect of graphics in computer-mediated communication. Comput Hum Behav 7:269–279. https://doi.org/10.1016/0747-5632(91)90015-s

Klockow-McClain KE, McPherson RA, Thomas RP (2020) Cartographic design for improved decision making: trade-offs in uncertainty visualization for Tornado threats. Ann Am Assoc Geogr 110:314–333. https://doi.org/10.1080/24694452.2019.1602467

Korenman LM, Peynircioglu ZF (2007) Individual differences in learning and remembering music: auditory versus visual presentation. J Res Music Educ 55:48–64. https://doi.org/10.1177/002242940705500105

Laamanen T, Maula M, Kajanto M, Kunnas P (2018) The role of cognitive load in effective strategic issue management. Long Range Plann 51:625–639. https://doi.org/10.1016/j.lrp.2017.03.001

Scimago Lab (2021) SJR : scientific journal rankings. In: SJR Sci. J. Rank. https://www.scimagojr.com/journalrank.php. Accessed 11 Jun 2021

Lawrence M, O’Connor M (1993) Scale, variability, and the calibration of judgmental prediction intervals. Organ Behav Hum Decis Process 56:441. https://doi.org/10.1006/obhd.1993.1063

Lefebre E, Fabrizio M, Merbitz C (2008) Accuracy and efficiency of data interpretation: a comparison of data display methods. J Precis Teach Celeration 24:2–20

Lem S, Onghena P, Verschaffel L, Van Dooren W (2013) On the misinterpretation of histograms and box plots. Educ Psychol 33:155–174. https://doi.org/10.1080/01443410.2012.674006

Lohse GL (1997) The role of working memory on graphical information processing. Behav Inf Technol 16:297–308. https://doi.org/10.1080/014492997119707

Lorenz S, Dessai S, Forster PM, Paavola J (2015) Tailoring the visual communication of climate projections for local adaptation practitioners in Germany and the UK. Philos Trans Math Phys Eng Sci 373:1–17. https://doi.org/10.1098/rsta.2014.0457

MacEachren AM (1992) Application of environmental learning theory to spatial knowledge acquisition from maps. Ann Assoc Am Geogr 82:245–274. https://doi.org/10.1111/j.1467-8306.1992.tb01907.x

MacEachren AM, Roth RE, O’Brien J et al (2012) Visual semiotics and uncertainty visualization: an empirical study. IEEE Trans vis Comput Graph 18:2496–2505. https://doi.org/10.1109/tvcg.2012.279

Marchak FM (1994) An overview of scientific visualization techniques applied to experimental psychology. Behav Res Methods Instrum Comput 26:177–180. https://doi.org/10.3758/BF03204613

Mason RO, Mitroff II (1981) Challenging strategic planning assumptions: theory, cases, and techniques. Wiley

Mayer RE, Gallini JK (1990) When is an illustration worth ten thousand words? J Educ Psychol 82:715. https://doi.org/10.1037/0022-0663.82.4.715

Mcbride M, Caldara M (2013) The efficacy of tables versus graphs in disrupting dark networks: an experimental study. Soc Netw 35:406–422. https://doi.org/10.1016/j.socnet.2013.04.008

McInerny GJ, Chen M, Freeman R et al (2014) Information visualisation for science and policy: engaging users and avoiding bias. Trends Ecol Evol 29:148–157. https://doi.org/10.1016/j.tree.2014.01.003

McIntire JP, Havig PR, Geiselman EE (2014) Stereoscopic 3D displays and human performance: a comprehensive review. Displays 35:18–26. https://doi.org/10.1016/j.displa.2013.10.004

Meyer AD (1991) Visual data in organizational research. Organ Sci 2:218–236. https://doi.org/10.1287/orsc.2.2.218

Meyer J (2000) Performance with tables and graphs: effects of training and a visual search model. Ergonomics 43:1840–1865. https://doi.org/10.1080/00140130050174509

Meyer J, Shinar D, Leiser D (1997) Multiple factors that determine performance with tables and graphs. Hum Factors 39:268–286. https://doi.org/10.1518/001872097778543921

Meyer J, Shamo MK, Gopher D (1999) Information structure and the relative efficacy of tables and graphs. Hum Factors 41:570–587. https://doi.org/10.1518/001872099779656707

Miettinen K (2014) Survey of methods to visualize alternatives in multiple criteria decision making problems. Spectr 36:3–37. https://doi.org/10.1007/s00291-012-0297-0

Miniard PW, Bhatla S, Lord KR et al (1991) Picture-based persuasion processes and the moderating role of involvement. J Consum Res 18:92–107. https://doi.org/10.1086/209244

Nadav-Greenberg L, Joslyn SL, Taing MU (2008) The effect of uncertainty visualizations on decision making in weather forecasting. J Cogn Eng Decis Mak 2:24–47. https://doi.org/10.1518/155534308X284354

Nelson PM, Van Norman ER, Christ TJ (2017) Visual analysis among novices: training and trend lines as graphic aids. Contemp Sch Psychol 21:93–102. https://doi.org/10.1007/s40688-016-0107-9

Newman GE, Scholl BJ (2012) Bar graphs depicting averages are perceptually misinterpreted: the within-the-bar bias. Psychon Bull Rev 19:601–607. https://doi.org/10.3758/s13423-012-0247-5

O’Keefe RM, Pitt IL (1991) Interaction with a visual interactive simulation, and the effect of cognitive style. Eur J Oper Res 54:339–348. https://doi.org/10.1016/0377-2217(91)90109-9

Ognjanovic S, Thüring M, Murphy RO, Hölscher C (2019) Display clutter and its effects on visual attention distribution and financial risk judgment. Appl Ergon 80:168–174. https://doi.org/10.1016/j.apergo.2019.05.008

Okan Y, Garcia-Retamero R, Cokely ET, Maldonado A (2018a) Biasing and debiasing health decisions with bar graphs: costs and benefits of graph literacy. Q J Exp Psychol 71:2506–2519. https://doi.org/10.1177/1747021817744546

Okan Y, Stone ER, Bruine W, de Bruin, (2018b) Designing graphs that promote both risk understanding and behavior change. Risk Anal 38:929–946. https://doi.org/10.1111/risa.12895

Padilla LM, Hansen G, Ruginski IT et al (2015) The influence of different graphical displays on nonexpert decision making under uncertainty. J Exp Psychol Appl 21:37–46. https://doi.org/10.1037/xap0000037

Padilla LM, Creem-Regehr SH, Hegarty M, Stefanucci JK (2018) Decision making with visualizations: a cognitive framework across disciplines. Cogn Res Princ Implic. https://doi.org/10.1186/s41235-018-0120-9

Parrott R, Silk K, Dorgan K et al (2005) Risk comprehension and judgments of statistical evidentiary appeals: When a picture is not worth a thousand words. Hum Commun Res 31:423–452. https://doi.org/10.1093/hcr/31.3.423

Peebles D (2008) The effect of emergent features on judgments of quantity in configural and separable displays. J Exp Psychol Appl 14:85–100. https://doi.org/10.1037/1076-898x.14.2.85

Peng C-H, Lurie NH, Slaughter SA (2019) Using technology to persuade: visual representation technologies and consensus seeking in virtual teams. Inf Syst Res 30:948–962. https://doi.org/10.1287/isre.2019.0843

Pennington R, Tuttle B (2009) Managing impressions using distorted graphs of income and earnings per share: the role of memory. Int J Account Inf Syst 10:25–45. https://doi.org/10.1016/j.accinf.2008.10.001

Perdana A, Robb A, Rohde F (2018) Does visualization matter? The role of interactive data visualization to make sense of information. Australas J Inf Syst 22:1–35. https://doi.org/10.3127/ajis.v22i0.1681

Perdana A, Robb A, Rohde F (2019) Interactive data and information visualization: unpacking its characteristics and influencing aspects on decision-making. Pac Asia J Assoc Inf Syst 11:75–104. https://doi.org/10.17705/1pais.11404

Pfaff MS, Klein GL, Drury JL et al (2013) Supporting complex decision making through option awareness. J Cogn Eng Decis Mak 7:155–178. https://doi.org/10.1177/1555343412455799

Phillips B, Prybutok VR, Peak DA (2014) Decision confidence, information usefulness, and information seeking intention in the presence of disconfirming information. Inform Sci Int J Emerg Transdiscipl 17:1–25. https://doi.org/10.28945/1932

Pieters R, Wedel M, Batra R (2010) The stopping power of advertising: measures and effects of visual complexity. J Mark 74:48–60. https://doi.org/10.1509/jmkg.74.5.48

Plass JL, Heidig S, Hayward EO et al (2014) Emotional design in multimedia learning: effects of shape and color on affect and learning. Learn Instrum 29:128–140. https://doi.org/10.1016/j.learninstruc.2013.02.006

Platts K, Tan KH (2004) Strategy visualisation: knowing, understanding, and formulating. Manag Decis 42:667–676. https://doi.org/10.1108/00251740410538505

Podsakoff PM, MacKenzie SB, Bachrach DG, Podsakoff NP (2005) The influence of management journals in the 1980s and 1990s. Strateg Manag J 26:473–488. https://doi.org/10.1002/smj.454

Porat T, Oron-Gilad T, Meyer J (2009) Task-dependent processing of tables and graphs. Behav Inf Technol 28:293–307. https://doi.org/10.1080/01449290701803516

Quattrone P (2017) Embracing ambiguity in management controls and decision-making processes: on how to design data visualisations to prompt wise judgement. Account Bus Res 47:588–612. https://doi.org/10.1080/00014788.2017.1320842

Radley KC, Dart EH, Wright SJ (2018) The effect of data points per x- to y-axis ratio on visual analysts evaluation of single-case graphs. Sch Psychol Q 33:314–322. https://doi.org/10.1037/spq0000243

Raidvee A, Toom M, Averin K, Allik J (2020) Perception of means, sums, and areas. Atten Percept Psychophys. https://doi.org/10.3758/s13414-019-01938-7

Raschke RL, Steinbart PJ (2008) Mitigating the effects of misleading graphs on decisions by educating users about the principles of graph design. J Inf Syst 22:23–52. https://doi.org/10.2308/jis.2008.22.2.23

Reani M, Peek N, Jay C (2019) How different visualizations affect human reasoning about uncertainty: an analysis of visual behaviour. Comput Hum Behav 92:55–64. https://doi.org/10.1016/j.chb.2018.10.033

Rebotier TP, Kirsh DJ, McDonough L (2003) Image-Dependent Interaction of Imagery and Vision. Am J Psychol 116:343–366. https://doi.org/10.2307/1423498

Rose ED (1966) Image, sound, and meaning. J Univ Film Prod Assoc 18:21–23

Sanfey A, Hastie R (1998) Does evidence presentation format affect judgment? An experimental evaluation of displays of data for judgments. Psychol Sci 9:99–103. https://doi.org/10.1111/1467-9280.00018

Sato Y, Stapleton G, Jamnik M, Shams Z (2019) Human inference beyond syllogisms: an approach using external graphical representations. Cogn Process 20:103–115. https://doi.org/10.1007/s10339-018-0877-2

Semmler C, Brewer N (2002) Using a flow-chart to improve comprehension of jury instructions. Psychiatry Psychol Law 9:262–267. https://doi.org/10.1375/13218710260612136

Sen T, Boe WJ (1991) Confidence and accuracy in judgements using computer displayed information. Behav Inf Technol 10:53–64. https://doi.org/10.1080/01449299108924271

Smerecnik CMR, Mesters I, Kessels LTE et al (2010) Understanding the positive effects of graphical risk information on comprehension: Measuring attention directed to written, tabular, and graphical risk information. Risk Anal 30:1387–1398. https://doi.org/10.1111/j.1539-6924.2010.01435.x

Speier C (2006) The influence of information presentation formats on complex task decision-making performance. Int J Hum-Comput Stud 64:1115–1131. https://doi.org/10.1016/j.ijhcs.2006.06.007

Spence I, Kutlesa N, Rose DL (1999) Using color to code quantity in spatial displays. J Exp Psychol Appl 5:393–412. https://doi.org/10.1037/1076-898X.5.4.393

Stone ER (2018) Link to external site this link will open in a new window, Reeder EC, et al. salience versus proportional reasoning: rethinking the mechanism behind graphical display effects. J Behav Decis Mak 31:473–486. https://doi.org/10.1002/bdm.2051

Stone ER, Bruin W, Wilkins AM et al (2017) Designing graphs to communicate risks: understanding how the choice of graphical format influences decision making. Risk Anal 37:612–628. https://doi.org/10.1111/risa.12660

Subramanian GH, Nosek J, Rahunathan SP, Kanitkar SS (1992) A comparison of the decision table and tree. Commun ACM 35:89–94. https://doi.org/10.1145/129617.129621

Sun Y, Li S, Bonini N (2010) Attribute salience in graphical representations affects evaluation. Judgm Decis Mak 5:151–158

Sun Y, Li S, Bonini N, Liu Y (2016) Effect of graph scale on risky choice: evidence from preference and process in decision-making. PLoS ONE. https://doi.org/10.1371/journal.pone.0146914

Suwa M, Tversky B (2002) External representations contribute to the dynamic construction of ideas. Springer, pp 341–343

Symmank C (2019) Extrinsic and intrinsic food product attributes in consumer and sensory research: literature review and quantification of the findings. Manag Rev Q 69:39–74. https://doi.org/10.1007/s11301-018-0146-6

Tak S, Toet A, van Erp J (2015) Public understanding of visual representations of uncertainty in temperature forecasts. J Cogn Eng Decis Mak 9:241–262. https://doi.org/10.1177/1555343415591275

Tang F, Hess TJ, Valacich JS, Sweeney JT (2014) The Effects of visualization and interactivity on calibration in financial decision-making. Behav Res Account 26:25–58. https://doi.org/10.2308/bria-50589

Tintarev N, Masthoff J (2016) Effects of individual differences in working memory on plan presentational choices. Front Psychol 7:1793. https://doi.org/10.3389/fpsyg.2016.01793

Toker D, Conati C (eds) (2017) Leveraging pupil dilation measures for understanding users’ cognitive load during visualization processing, pp 267–270

Tuttle BM, Kershaw R (1998) Information presentation and judgment strategy from a cognitive fit perspective. J Inf Syst 12:1

Umanath NS, Vessey I (1994) Multiattribute data presentation and human judgment: a cognitive fit perspective. Decis Sci 25:795–824. https://doi.org/10.1111/j.1540-5915.1994.tb01870.x

van den Berg R, Cornelissen FW, Roerdink JBTM (2007) Perceptual dependencies in information visualization assessed by complex visual search. ACM Trans Appl Percept. https://doi.org/10.1145/1278760.1278763

Van der Linden SL, Leiserowitz AA, Feinberg GD, Maibach EW (2014) How to communicate the scientific consensus on climate change: plain facts, pie charts or metaphors? Clim Change 126:255–262. https://doi.org/10.1007/s10584-014-1190-4

Van Norman ER, Nelson PM, Shin J-E, Christ TJ (2013) An evaluation of the effects of graphic aids in improving decision accuracy in a continuous treatment design. J Behav Educ 22:283–301. https://doi.org/10.1007/s10864-013-9176-2

Verovsek Š, Juvancic M, Zupancic T (2013) Using visual language to represent interdisciplinary content in urban development. Urbani Izziv 24:144–155. https://doi.org/10.5379/urbani-izziv-en-2013-24-02-006

Vessey I (1991) Cognitive fit: a theory-based analysis of the graphs versus tables literature. Decis Sci 22:219–240. https://doi.org/10.1111/j.1540-5915.1991.tb00344.x

Vessey I, Galletta D (1991) Cognitive fit: An empirical study of information acquisition. Inf Syst Res 2:63–84. https://doi.org/10.1287/isre.2.1.63

Vila J, Gomez Y (2016) Extracting business information from graphs: an eye tracking experiment. J Bus Res 69:1741. https://doi.org/10.1016/j.jbusres.2015.10.048

Volkov A, Laing GK (2012) Assessing the value of graphical presentations in financial reports. Australas Account Bus Finance J 6:85–107

Wang D, Guo D, Zhang H (eds) (2017) Spatial temporal data visualization in emergency management: a view from data-driven decision. Rolando Beach, CA, USA, pp 1–7

Washburne JN (1927) An experimental study of various graphic, tabular, and textual methods of presenting quantitative material. J Educ Psychol 18:361. https://doi.org/10.1037/h0070054

Watkins ET (2000) Improving the analyst and decision-maker’s perspective through uncertainty visualization. Master’s thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio

Wesslen R, Santhanam S, Karduni A et al (2019) Investigating effects of visual anchors on decision-making about misinformation. Comput Graph Forum 38:161–171. https://doi.org/10.1111/cgf.13679

Whittington R, Yakis-Douglas B, Ahn K (2016) Cheap talk? Strategy presentations as a form of chief executive officer impression management. Strateg Manag J 37:2413–2424. https://doi.org/10.1002/smj.2482

Wu CM, Meder B, Filimon F, Nelson JD (2017) Asking better questions: How presentation formats influence information search. J Exp Psychol Learn Mem Cogn 43:1274–1297. https://doi.org/10.1037/xlm0000374

Xu Y (2005) The effect of graphic disclosures on users’ perceptions: an experiment. J Account Finance Res 13:39–50

Yigitbasioglu OM, Velcu O (2012) A review of dashboards in performance management: Implications for design and research. Int J Account Inf Syst 13:41–59. https://doi.org/10.1016/j.accinf.2011.08.002

Yildiz E, Boehme R (eds) (2017) Effects of information security risk visualization on managerial decision making. Internet Society, Paris, France

Yoon SA (2011) Using social network graphs as visualization tools to influence peer selection decision-making strategies to access information about complex socioscientific issues. J Learn Sci 20:549–588. https://doi.org/10.1080/10508406.2011.563655

Zabukovec A, Jaklič J (2015) The impact of information visualisation on the quality of information in business decision-making. Int J Technol Hum Interact IJTHI 11:61–79. https://doi.org/10.4018/ijthi.2015040104

Zacks J, Levy E, Tversky B, Schiano DJ (1998) Reading bar graphs: effects of extraneous depth cues and graphical context. J Exp Psychol Appl 4:119–138. https://doi.org/10.1037/1076-898X.4.2.119

Zelazny G (2001) Say it with charts: the executive’s guide to visual communication. McGraw-Hill Education

Zhang P (1998) An image construction method for visualizing managerial data. Decis Support Syst 23:371. https://doi.org/10.1016/s0167-9236(98)00050-5