The effects of toxicants on planktonic systems: an integrated approach using the analysis of size distributions

Journal of Aquatic Ecosystem Health - Tập 8 - Trang 95-105 - 2000
Robert M. Baca1, Stephen T. Threlkeld1
1Department of Biology, University of Mississippi, University, U.S.A.

Tóm tắt

We measured size distributions in model wetlands to detect stressor effects at the community level. Two experiments investigated the individual and combined effects of methyl mercury, chlorpyrifos, atrazine, monosodium methane arsonate, and UV-B light on the system. The statistical analysis of the metric using size distributions, which integrated information about organisms 0.2–4750 µm in size, detected effects in the planktonic community. Effects were found in both experiments, but only when methyl mercury was present in the treatment structure, indicating that system level effects are most likely with broad spectrum or persistent toxicants. Methyl mercury negatively affected most size classes measured in both experiments. A methyl mercury × chlorpyrifos interaction was detected which shifted the size distribution to larger organisms more than expected, but the interaction effect was much smaller than the effect of methyl mercury alone.

Tài liệu tham khảo

Almond, M.J.R., E. Bentzen & W.D. Taylor, 1996. Size structure and species composition of plankton communities in deep Ontario lakes with and without Mysis relicta and planktivorous fish. Can. J. Fish. Aquat. Sci. 53: 315–325. APHA, 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC. Baca, R.M., 1998. The Use of Size Distributions in Ecological Experiments. Ph.D. dissertation. University of Mississippi, 168 pp. Baldi, F., A. Boudou & F. Ribeyre, 1992. Response of a freshwater bacterial community to mercury contamination (HgCl2 and CH3HgCl) in a controlled system. Arch. Environ. Contam. Toxicol. 22: 439–444. Borgmann, U., 1980. Interactive effects of metals in mixtures on biomass production kinetics of freshwater copepods. Can. J. Fish. Aquat. Sci. 37: 1295–1302. Borgmann, U., 1985. Predicting the effect of toxic substances on pelagic ecosystems. The Science of the Total Environment 44: 111–121. Borgmann, U., R. Cove & C. Loveridge, 1980. Effect of metals on the biomass production kinetics of freshwater copepods. Can. J. Fish. Aquat. Sci. 37: 567–575. Bothwell, M.L., D. Sherbot, A.C. Roberge & R.J. Daley, 1993. Influence of natural ultraviolet radiation on lotic periphytic diatom community growth, biomass accrual, and species composition: short-term versus long-term effects. J. Phycol. 29: 24–35. Britson, C.A. & S.T. Threlkeld, 1998. Abundance, metamorphosis, developmental, and behavioral abnormalities in Hyla chrysoscelis tadpoles following exposure to three agrichemicals and methyl mercury in outdoor mesocosms. Bull. Environm. Contam. Toxicol. 61: 154–161. Bryan, G.W. & W.J. Langston, 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ. Pollut. 76: 89–131. Cairns, J., Jr., P.V. McCormick & B.R. Niederlehner, 1993. A proposed framework for developing indicators of ecosystem health. Hydrobiologia 263: 1–44. Drenner, R.W. & J.D. Smith, 1991. Biomass-dependent effects of mosquitofish on zooplankton, chlorophyll and the size distribution of particulate phosphorus. Verh. Int. Ver. Limnol. 24: 2382–2386. Griesbach, S., R.H. Peters & S. Youakim, 1982. An allometric model for pesticide accumulation. Can. J. Fish. Aquat. Sci. 39: 727–735. Hill, W.R., A.J. Stewart & G.E. Napolitano, 1996. Mercury speciation and bioaccumulation in lotic primary producers and primary consumers. Can. J. Fish. Aquat. Sci. 53: 812–819. Hoagland, K.D., R.W. Drenner, J.D. Smith & D.R. Cross, 1993. Freshwater community responses to mixtures of agricultural pesticides: effects of atrazine and bifenthrin. Environ. Toxicol. Chem. 12: 627–637. Joern, A. & K.D. Hoagland, 1996. In defense of whole-community bioassays for risk assessment. Environ. Toxicol. Chem. 15: 407–409. Karentz, D., M.L. Bothwell, R.B. Coffin, A. Hanson, G.J. Herndl, S.S. Kilham, M.P. Lesser, M. Kindell, R.E. Moeller, D.P. Morris, P.J. Neale, R.W. Sanders, C.S. Weiler & R.G. Wetzel, 1994. Impact of UV-B radiation on pelagic freshwater ecosystems: report of working group on bacteria and phytoplankton. Arch. Hydrobiol., Beih. Ergebn. Limnol. 43: 31–69. Kerr, S.R. & L.M. Dickie, 1984. Measuring the health of aquatic ecosystems. In: V.W. Cairns, P.V. Hodson & J.O. Nriagu (eds), Contaminant Effects on Fisheries. John Wiley & Sons, New York: 279–284. Kerr, S.R. & W.P. Vass, 1973. Pesticide residues in aquatic invertebrates. In Edwards, C.A. (ed.), Environmental Pollution by Pesticides. Plenum Press, London: 134–180. Larson, S.J., P.D. Capel & M.S. Majewski, 1997. Pesticides in Surface Waters: Distribution, Trends, and Governing Factors. Ann Arbor Press Inc., Chelsea, 373 pp. Lean, D.R.S., 1973. Phosphorus dynamics in lake water. Science 179: 678–680. Mazumder, A., D.J. McQueen, W.D. Taylor & D.R.S. Lean, 1988. Effects of fertilization and planktivorous fish (yellow perch) predation on size distribution of particulate phosphorus and assimilated phosphate: large enclosure experiments. Limnol. Oceanogr. 33: 421–430. Menzel, D.W. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10: 280–282. Montgomery, D.C., 1991. Design and Analysis of Experiments. John Wiley & Sons, New York, 649 pp. O'Conners, H.B., Jr., C.F. Wurster, C.D. Powers, D.C. Biggs & R.G. Rowland, 1978. Polychlorinated biphenyls may alter marine trophic pathways by reducing phytoplankton size production. Science 201: 737–739. Peters, R.H., 1983. Size structure of the plankton community along the trophic gradient of Lake Memphremagog. Can. J. Fish. Aquat. Sci. 40: 1770–1778. Platt, T., K.H. Mann & R.E. Ulanowicz, 1981. Mathematical Models in Biological Oceanography. Unesco Press, Paris, 156 pp. Pratt, J.R., A.E. Melendez, R. Barreiro & N.J. Bowers, 1997. Predicting the ecological effects of herbicides. Ecological Applications 7: 1117–1124. SAS Institute, 1988, SAS/STAT User's Guide. SAS Institute Inc., Cary, 1028 pp. Schindler, D.W., 1996. Ecosystems and ecotoxicology: a personal perspective. In: Newman, M.C. & C.H. Jagoe (eds), Ecotoxicology: a Hierarchical Treatment. CRC Press, Boca Raton: 371–398. Siebeck, O., T.L. Vail, G.E. Williamson, R. Vetter, D. Hessen, H. Zagarese, E. Little, E. Balseiro, B. Modenutti, J. Seva & A. Shumate, 1994. Impact of UV-B radiation on zooplankton and fish in pelagic freshwater ecosystems. Arch. Hydrobiol., Beih. Ergebn. Limnol. 43: 101–114. Simon, D., S. Helliwell & K. Robards, 1998. Pesticide toxicity endpoints in aquatic ecosystems. J. Aquat. Ecosys. Stress Recov. 6: 159–177. Slemr, F. & E. Langer, 1992. Increase in global atmospheric concentrations of mercury inferred from measurements of the Atlantic Ocean. Nature 355: 433–437. Solomon, K.R., D.B. Baker, R.P. Richards, K.R. Dixon, S.J. Klaine, T.W. LaPoint, R.J. Kendall, J. Lenwood, W. Hall & W.M. Williams, 1996. Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem. 15: 31–76. Sorrano, R., F. Hernandez, J.B. Pena, V. Dosda & J. Canales, 1995. Toxicity and bioconcentration of selected organophophorus pesticides in Mytilus galloprovincialis and Venus gallina. Arch. Environ. Contam. Toxicol. 29: 284–290. Sprules, W.G. & L.B. Holtby, 1979. Body size and feeding ecology as alternatives to taxonomy for the study of limnetic zooplankton community structure. J. Fish. Res. Bd Can. 36: 1354–1363. Sprules, W.G. & M. Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aquat. Sci. 43: 1789–1794. Steevens, J., J. Allgood, W.H. Benson & S.T. Threlkeld, 1997. Chemical mixtures in a wetland mesocosm: fate of chlorpyrifos, atrazine, monosodium methanearsonate, and methyl mercury. Abs. Soc. Environ. Toxicol. Chem. 18th Annual Meeting: 263. Strayer, D.L., 1991. Perspectives on the size structure of lacustrine zoobenthos, its causes, and its consequences. J. N. Am. Benthol. Soc. 10: 210–221. Thomann, R.V., 1979. An analysis of PCB in Lake Ontario using a size-dependent food chain model. In: Scavia, D. & A. Robertson (eds), Perspectives on Lake Ecosystem Modeling. Arbor Science Publishers, Ann Arbor: 293–320. USEPA, 1995. The Generic Expected Environmental Concentration Program (GENEEC), vol. 2. Environmental Fate and Effects Division, Washington, D.C. van Veldhoven, P.P. & G.P. Mannaerts, 1987. Inorganic and organic phosphate measurements in the nanomolar range. Anal. Biochem. 161: 45–48. Watras, C.J. & N.S. Bloom, 1992. Mercury and methyl mercury in individual zooplankton: implications for bioaccumulation. Limnol. Oceanogr. 37: 1313–1318. Woodwell, G.M., 1970. Effects of pollution on the structure and physiology of ecosystems. Science 148: 429–433. Zillioux, E.J., D.B. Porcella & J.M. Benoit, 1993. Mercury cycling and effects in freshwater wetland ecosystems. Environ. Toxicol. Chem. 12: 2245–2264.