Ảnh hưởng của hỗn hợp thực phẩm chức năng đến các cytokine viêm và các phát hiện sinh hóa ở bệnh nhân COVID-19 nhập viện: một thử nghiệm lâm sàng ngẫu nhiên mù đôi

Springer Science and Business Media LLC - Tập 24 - Trang 1-9 - 2023
Hadi Esmaeili Gouvarchinghaleh1, Fateme Kiany2, Karim Parastouei3, Gholamhosein Alishiri4, Nematollah Jonaidi Jafari3, Abbas Ali Imani Fooladi5, Afsaneh Pargar6, Ali Ghazvini6, Reza Mirnejad7, Mehdi Raei3, Ahmadreza Sharifi Olounabadi8, Mansour Babaei9, Soleyman Heydari6, Hosein Rostami3, Alireza Shahriary4, Gholamreza Farnoosh10, Vahid Sobhani11, Mohammad Mahdi Mazhari3, Farshad NajjarAsiabani1
1Applied Virology Research Center, Baqiyatallah University of Medical sciences, Tehran, Iran
2Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
3Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
4Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
5Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
6Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
7Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
8Medicine, Quran and Hadith Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
9Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
10Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
11Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

Tóm tắt

Đại dịch bệnh Coronavirus 2019 (COVID-19) đã cho thấy ảnh hưởng đến các khuyến nghị về dinh dưỡng. Một số thực phẩm chức năng đã được chứng minh là hữu ích trong việc điều trị cho những người mắc COVID-19. Tuy nhiên, rất ít thông tin về tác động của việc kết hợp các thực phẩm chức năng trong việc kiểm soát bệnh. Nghiên cứu này nhằm điều tra tác động của hỗn hợp thực phẩm chức năng đến mức độ cytokine viêm trong huyết thanh và các phát hiện sinh hóa ở bệnh nhân COVID-19. Một thử nghiệm lâm sàng ngẫu nhiên mù đôi đã được tiến hành tại bệnh viện Baqiyatallah Al-Azam ở Tehran, Iran. Sáu mươi bệnh nhân được phân ngẫu nhiên để nhận một loại súp chứa thực phẩm chức năng (n = 30) hoặc một loại súp thông thường (nhóm đối chứng) (n = 30). Thông tin sociodemographic của người tham gia đã được thu thập bằng cách sử dụng một bảng hỏi chung. Mức độ các chỉ số viêm trong máu và các phát hiện sinh hóa đã được đánh giá theo các quy trình tiêu chuẩn. Kết quả cho thấy súp chứa thực phẩm chức năng hiệu quả hơn trong việc kiểm soát mức D-dimer, nitơ urê máu và creatinine trong huyết thanh so với nhóm đối chứng (P < 0,05). Ngoài ra, sự cải thiện đáng kể hơn đã được tìm thấy ở nhóm can thiệp so với nhóm đối chứng về mặt interleukin (IL)-1β, IL-6, IL-17, IL-10 và yếu tố hoại tử khối u-α (P < 0,05). Ngược lại, can thiệp kiểm soát nhóm đối chứng hiệu quả hơn trong việc kiểm soát mức kali và giảm protein phản ứng C định lượng so với nhóm can thiệp (P < 0,05). Nghiên cứu này cho thấy rằng súp chứa thực phẩm chức năng có thể làm giảm các dấu markers viêm ở bệnh nhân COVID-19. Tuy nhiên, tính hiệu quả của nó trên các kết quả sinh hóa vẫn chưa rõ ràng, điều này đòi hỏi cần có thêm nghiên cứu.

Từ khóa


Tài liệu tham khảo

Peeri NC, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol. 2020;49(3):717–26. Xie Y, et al. Epidemiologic, clinical, and laboratory findings of the COVID-19 in the current pandemic: systematic review and meta-analysis. BMC Infect Dis. 2020;20(1):1–12. Zhang Z-L, et al. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest. 2020;80(6):441–7. Conti P, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):1. Kritas S, et al. Mast cells contribute to coronavirus-induced inflammation: new anti-inflammatory strategy. J Biol Regul Homeost Agents. 2020;34(1):9–14. Hacker KA, et al. Peer reviewed: COVID-19 and chronic disease: the impact now and in the future. Prev Chronic Dis. 2021;18:E62. Cheng VC-C, et al. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. J Infect. 2020;81(1):107–14. Park SW, et al. Potential role of social distancing in mitigating spread of coronavirus disease, South Korea. Emerg Infect Dis. 2020;26(11):2697. Machingaidze S, Wiysonge CS. Understanding COVID-19 vaccine hesitancy. Nat Med. 2021;27(8):1338–9. Wu D, et al. Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2019;9:3160. Grant WB, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4):988. Childs CE, Calder PC, Miles EA. Diet and immune function. 2019. p. 1933 MDPI. Gabriele M, Pucci L. Diet bioactive compounds: implications for oxidative stress and inflammation in the vascular system. Endocr Metab Immune Disord Drug Targets. 2017;17(4):264–75. Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2(3):355–74. Rubin LP, et al. Metabolic effects of inflammation on vitamin A and carotenoids in humans and animal models. Adv Nutr. 2017;8(2):197–212. Wannamethee SG, et al. Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis. Am J Clin Nutr. 2006;83(3):567–74. Khan N, et al. Cocoa polyphenols and inflammatory markers of cardiovascular disease. Nutrients. 2014;6(2):844–80. Kaulmann A, Bohn T. Carotenoids, inflammation, and oxidative stress–implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res. 2014;34(11):907–29. Ma Y, et al. Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative Observational Study. Nutrition. 2008;24(10):941–9. Stanton C, et al. Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol. 2005;16(2):198–203. Scientific concepts of functional foods in Europe. Consensus document. Br J Nutr. 1999;81 Suppl 1:S1-27. Shahidi F. Functional foods: their role in health promotion and disease prevention. J Food Sci. 2004;69(5):R146–9. Akour A. Probiotics and COVID-19: is there any link? Lett Appl Microbiol. 2020;71(3):229–34. Baud D, et al. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health. 2020;8:186. Sundararaman A, et al. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol. 2020;104(19):8089–104. Rogero MM, et al. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radical Biol Med. 2020;156:190–9. Zahedipour F, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res. 2020;34(11):2911–20. Rocha FAC, de Assis MR. Curcumin as a potential treatment for COVID-19. Phytother Res. 2020;34(9):2085-7. Colunga Biancatelli RML, et al. Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol. 2020;11:1451. Anderberg SB, et al. Increased levels of plasma cytokines and correlations to organ failure and 30-day mortality in critically ill COVID-19 patients. Cytokine. 2021;138:155389. Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. Lee H, Lee IS, Choue R. Obesity, inflammation and diet. Pediatr Gastroenterol Hepatol Nutr. 2013;16(3):143–52. Carr AC, Rowe S. The emerging role of vitamin C in the prevention and treatment of COVID-19. Nutrients. 2020;12(11):3286. Calder PC. Nutrition and immunity: lessons for COVID-19. Eur J Clin Nutr. 2021;75(9):1309–18. Abobaker A, Alzwi A, Alraied AHA. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep. 2020;72(6):1517–28. Lewis ED, Meydani SN, Wu D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life. 2019;71(4):487–94. Tanumihardjo SA, et al. Biomarkers of nutrition for development (BOND)-vitamin a review. J Nutr. 2016;146(9):1816s-s1848. Ávila-Román J, et al. Anti-inflammatory and anticancer effects of microalgal carotenoids. Mar Drugs. 2021;19(10):531. Palozza P, et al. Beta-carotene regulates NF-kappaB DNA-binding activity by a redox mechanism in human leukemia and colon adenocarcinoma cells. J Nutr. 2003;133(2):381–8. Simone RE, et al. Lycopene inhibits NF-kB-mediated IL-8 expression and changes redox and PPARγ signalling in cigarette smoke-stimulated macrophages. PLoS One. 2011;6(5):e19652. Armoza A, et al. Tomato extract and the carotenoids lycopene and lutein improve endothelial function and attenuate inflammatory NF-κB signaling in endothelial cells. J Hypertens. 2013;31(3):521–9; discussion 529. Kwok SK, et al. Retinoic acid attenuates rheumatoid inflammation in mice. J Immunol. 2012;189(2):1062–71. Olmedilla B, et al. Serum concentrations of carotenoids and vitamins A, E, and C in control subjects from five European countries. Br J Nutr. 2001;85(2):227–38. Xu XR, et al. Effects of lutein supplement on serum inflammatory cytokines, ApoE and lipid profiles in early atherosclerosis population. J Atheroscler Thromb. 2013;20(2):170–7. Riso P, et al. Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J Agric Food Chem. 2006;54(7):2563–6. Watzl B, et al. A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am J Clin Nutr. 2005;82(5):1052–8. Catanzaro M, et al. Immunomodulators inspired by nature: a review on curcumin and Echinacea. Molecules. 2018;23(11):2778. Derosa G, et al. Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;111:394–404. Sahebkar A, et al. Curcumin downregulates human tumor necrosis factor-α levels: a systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res. 2016;107:234–42. Jasso-Miranda C, et al. Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies. Infect Drug Resist. 2019;12:1833–52. Mounce BC, et al. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res. 2017;142:148–57. Sordillo PP, Helson L. Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. In Vivo. 2015;29(1):1–4. Liu S, et al. A prospective study of dietary fiber intake and risk of cardiovascular disease among women. J Am Coll Cardiol. 2002;39(1):49–56. Pereira MA, et al. Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. Arch Intern Med. 2004;164(4):370–6. Liu S. Whole-grain foods, dietary fiber, and type 2 diabetes: searching for a kernel of truth. Am J Clin Nutr. 2003;77(3):527–9. Salyers AA, Kuritza AP, McCarthy RE. Influence of dietary fiber on the intestinal environment. Proc Soc Exp Biol Med. 1985;180(3):415–21. King DE. Dietary fiber, inflammation, and cardiovascular disease. Mol Nutr Food Res. 2005;49(6):594–600. Li Y, et al. Quercetin, inflammation and immunity. Nutrients. 2016;8(3):167. Venkatakrishnan K, Chiu HF, Wang CK. Extensive review of popular functional foods and nutraceuticals against obesity and its related complications with a special focus on randomized clinical trials. Food Funct. 2019;10(5):2313–29. Bhaskar V, et al. Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice. Atherosclerosis. 2011;216(2):313–20.