Ảnh hưởng của phân bón đến sự gia tăng độ phóng xạ tự nhiên của cây bắp cải

N. F. Kadhim1, H. N. B. Khalaf2, Y. A. Baqir1, H. Abid-Al-Ammer1, M. Y. A. Mostafa2,3
1Department of Physics, College of Science, Al-Mustansiriyah University, Baghdad, Iraq
2Department of Physics, Faculty of Science, Minia University, El-Minia, Egypt
3Ural Federal University, Yekaterinburg, Russia

Tóm tắt

Trong nghiên cứu này, ảnh hưởng của các loại phân bón khác nhau đến hàm lượng độ phóng xạ tự nhiên của đất và cây bắp cải đã được nghiên cứu. Quang phổ gamma sử dụng thuốc thử NaI (Tl) được sử dụng để ước lượng nồng độ phóng xạ trong mẫu cây bắp cải và mẫu đất. Một mẫu kiểm soát được trồng mà không thêm bất kỳ loại phân bón nào và năm mẫu được bón phân trong suốt thời gian trồng. Năm loại phân bón phổ biến được sử dụng trên các trang trại Iraq đã được bổ sung riêng cho mỗi cây bắp cải (NPK, DAP, urê và hữu cơ). Hoạt tính cụ thể của U-238 dao động từ 0,52 ± 0,83 Bq kg−1 cho D.2 (urê từ Iraq) đến 4,15 ± 0,51 Bq kg−1 cho D.1 (DAP, super phosphate P2O5 từ Lebanon). Trong tất cả các loại phân bón được sử dụng, hoạt tính cụ thể của Th-232 thấp hơn 1 Bq kg−1. Hoạt tính U-238 và Th-232 rất thấp được quan sát thấy trong các mẫu đất và bắp cải sản xuất không có phân bón (dưới 0,2 Bq kg−1). Hoạt tính cụ thể cao nhất cho K-40 trong các mẫu phân bón (188,16 ± 19,6 Bq kg−1) được tìm thấy trong mẫu phân bón từ Các Tiểu vương quốc Ả Rập Thống nhất (NPK, N.4). Dựa trên các phép đo hoạt tính cụ thể, các tham số nguy cơ bức xạ được ước lượng. Các tham số nguy cơ bức xạ nằm trong các giới hạn được khuyến cáo. Nên tránh sử dụng hỗn hợp super phosphate P2O5 (DAP): nếu việc sử dụng là cần thiết, thì các biện pháp kiểm soát bức xạ phải được áp dụng. Giá trị của các tham số nguy cơ trung bình cho tất cả các mẫu thấp hơn giá trị trung bình thế giới và các nghiên cứu trước đây.

Từ khóa

#phân bón #phóng xạ tự nhiên #bắp cải #hoạt tính phóng xạ #kiểm soát bức xạ

Tài liệu tham khảo

Abdelfatah Mostafa MY, Bader Khalaf HN, Zhukovsky M (2020) Radon decay products equilibrium at different aerosol concentrations. Appl Radiat Isot 156:108981. https://doi.org/10.1016/j.apradiso.2019.108981 Abojassim AA, Hady HN, Mohammed ZB (2016) Natural radioactivity levels in some vegetables and fruits commonly used in Najaf Governorate, Iraq. J Bioenergy Food Sci 3:113–123. https://doi.org/10.18067/jbfs.v3i3.108 Acton, D. F.; Gregorich LJ (1995) The Health of Our Soils;Toward sustainable agriculture in Canada Agwu KK, Okeji MC, Tchokossa P (2017) Potential radiological impacts of phosphate fertilizers brands used in Southeast, Nigeria. Am J Appl Sci 14:632–635. https://doi.org/10.3844/ajassp.2017.632.635 Ahmed NK, El-Arabi AGM (2005) Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. J Environ Radioact 84:51–64. https://doi.org/10.1016/j.jenvrad.2005.04.007 Ajmal PY, Bhangare RC, Tiwari M et al (2014) External gamma radiation levels and natural radioactivity in soil around a phosphate fertilizer plant at Mumbai. J Radioanal Nucl Chem 300:23–27. https://doi.org/10.1007/s10967-014-2941-4 Al-Ghamdi AH (2019) Health risk assessment of natural background radiation in the soil of Eastern province, Saudi Arabia. J Radiat Res Appl Sci 12:219–225. https://doi.org/10.1080/16878507.2019.1637045 Alharbi WR (2013) Natural radioactivity and dose assessment for brands of chemical and organic fertilizers used in Saudi Arabia. J Mod Phys 04:344–348. https://doi.org/10.4236/jmp.2013.43047 Alharbi A, El-Taher A (2013) A study on transfer factors of radionuclides from soil to plant. Life Sci J 10:532–539 Bolca M, Saç MM, Çokuysal B et al (2007) Radioactivity in soils and various foodstuffs from the Gediz River Basin of Turkey. Radiat Meas 42:263–270. https://doi.org/10.1016/j.radmeas.2006.12.001 Boukhenfouf W, Boucenna A (2011) The radioactivity measurements in soils and fertilizers using gamma spectrometry technique. J Environ Radioact 102:336–339. https://doi.org/10.1016/j.jenvrad.2011.01.006 Boumala D, Mavon C, Belafrites A et al (2018) Evaluation of radionuclide concentrations and external gamma radiation levels in phosphate ores and fertilizers commonly used in Algeria. J Radioanal Nucl Chem 317:501–510. https://doi.org/10.1007/s10967-018-5871-8 Calin MR, Radulescu I, Calin MA (2015) Measurement and evaluation of natural radioactivity in phosphogypsum in industrial areas from Romania. J Radioanal Nucl Chem 304:1303–1312. https://doi.org/10.1007/s10967-015-3970-3 Chauhan P, Chauhan RP (2014) Variation in alpha radioactivity of plants with the use of different fertilizers and radon measurement in fertilized soil samples. J Environ Health Sci Eng 12:1–8. https://doi.org/10.1186/2052-336X-12-70 Chauhan P, Chauhan RP, Gupta M (2013) Estimation of naturally occurring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques. Microchem J 106:73–78. https://doi.org/10.1016/j.microc.2012.05.007 Darwish DAE, Abul-Nasr KTM, El-Khayatt AM (2015) The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai, Egypt. J Radiat Res Appl Sci 8:17–25. https://doi.org/10.1016/j.jrras.2014.10.003 dos Santos Júnior JA, Cardoso JJRF, da Silva CM et al (2005) Analysis of the 40K levels in soil using gamma spectrometry. Braz Arch Biol Technol 48:221–228. https://doi.org/10.1590/S1516-89132005000700033 El-Gamal A, Nasr S, El-Taher A (2007) Study of the spatial distribution of natural radioactivity in the upper Egypt Nile River sediments. Radiat Meas 42:457–465. https://doi.org/10.1016/j.radmeas.2007.02.054 El-Taher A, Abdelhalim MAK (2013) Elemental analysis of phosphate fertilizer consumed in Saudi Arabia. J Jpn Soc Pediatr Surg 10:701–708. https://doi.org/10.11164/jjsps.8.4_525_2 Erisman JW, van Grinsven H, Grizzetti B et al (2011) The European nitrogen problem in a global perspective. Eur Nitrogen Assess. https://doi.org/10.1017/cbo9780511976988.005 Hamamo H, Landsberger S, Harbottle G, Panno S (1995) Studies of radioactivity and heavy metals in phosphate fertilizer. J Radioanal Nucl Chem Art 194:331–336. https://doi.org/10.1007/BF02038431 Hanfi MY, Masoud MS, Ambrosino F, Mostafa MYA (2021a) Natural radiological characterization at the Gabal El Seila region (Egypt). Appl Radiat Isot 173:109705. https://doi.org/10.1016/j.apradiso.2021.109705 Hanfi MY, Masoud MS, Mostafa MYA (2021b) Estimation of airborne radon concentration inside historical Roman building at southeastern, Egypt. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.12.494 Harrison J, Phipps A, Stather J (2004) Doses to infants from radionuclides ingested in mothers’ milk. Ann ICRP 34:3. https://doi.org/10.1016/j.icrp.2005.02.001 Hassan NM (2013) Elemental analysis of egyption phosphate fertilizer components samples by TGA, DTA and IR Methodes. IOSR J Environ Sci Toxicol Food Technol 7:98–106. https://doi.org/10.9790/2402-07398106 Hassan NM, Mansour NA, Fayez-Hassan M, Sedqy E (2016) Assessment of natural radioactivity in fertilizers and phosphate ores in Egypt. J Taibah Univ Sci 10:296–306. https://doi.org/10.1016/j.jtusci.2015.08.009 Hassan NM, Chang BU, Tokonami S (2017a) Comparison of natural radioactivity of commonly used fertilizer materials in Egypt and Japan. J Chem. https://doi.org/10.1155/2017/9182768 Hassan NM, Mansour NA, Fayez-Hassan M, Fares S (2017b) Assessment of radiation hazards due to exposure to radionuclides in marble and ceramic commonly used as decorative building materials in Egypt. Indoor Built Environ 26:317–326. https://doi.org/10.1177/1420326X15606507 Hussain RO, Hussain HH (2011) Investigation the natural radioactivity in local and imported chemical fertilizers. Braz Arch Biol Technol 54:777–782. https://doi.org/10.1590/s1516-89132011000400018 Islam A (2014) Assessment of dose due to natural radio-nuclides in vegetables of high background radiation area in south-eastern part of Bangladesh. Int J Radiat Res 12:271–275 Jaafar S, Kabir A, Nisar A (2016) Impact of fertilizers on the uptake of 226 Ra, 232 Th, and 40 K by pot- grown rice plants. Pollution 2:1–10. https://doi.org/10.7508/pj.2016.01.0 Jaafar S, Kabir A (2016) Impact of fertilizers on the uptake of 226 Ra, 232 Th, and 40 K by pot- grown rice plants. 2:1–10. https://doi.org/10.7508/pj.2016.01.0 Jibiri NN, Fasae KP (2012) Activity concentrations of 226Ra, 232Th and 40K in brands of fertilisers used in Nigeria. Radiat Prot Dosimetry 148:132–137. https://doi.org/10.1093/rpd/ncq589 Kadhim NF, Najam L (2020) Radiation hazard of chemical fertilizers used in growing agriculture crops in Iraq. J Radiat Nucl Appl 5:127–134. https://doi.org/10.18576/jrna/050207 Kadhim NF, Ridha AA (2019) Radiation hazards of the moassel consumed in Baghdad/Iraq using NaI(Tl) gamma spectroscopy. Int J Environ Sci Technol 16:8209–8216. https://doi.org/10.1007/s13762-019-02373-9 Kadhim NF, Baqir YA, Najam LA (2020) Radiation hazard of chemical fertilizers used in growing agriculture crops in Iraq. J Radiat Nucl Appl 5:127–134. https://doi.org/10.18576/jrna/050207 Kadhim NF, Khalaf HNB, Hassan HA, Mostafa MYA (2021) Determining the natural radioactivity of spices widely used in Iraq. Int J Environ Anal Chem 00:1–12. https://doi.org/10.1080/03067319.2021.1901897 Karunakara N, Rao C, Ujwal P et al (2013) Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: A study on rice grown in India. J Environ Radioact 118:80–92. https://doi.org/10.1016/j.jenvrad.2012.11.002 Khan K, Khan HM, Tufail M et al (1998) Radiometric analysis of Hazara phosphate rock and fertilizers in Pakistan. J Environ Radioact 38:77–84. https://doi.org/10.1016/S0265-931X(97)00018-0 Khater A (2008) Uranium, mining and hydrogeology. Uranium, Min Hydrogeol. https://doi.org/10.1007/978-3-540-87746-2 Khater AEM, AL-Sewaidan HA (2008) Radiation exposure due to agricultural uses of phosphate fertilizers. Radiat Meas 43:1402–1407. https://doi.org/10.1016/j.radmeas.2008.04.084 Kibria G, Hossain MM, Mallick D et al (2016) Monitoring of metal pollution in waterways across Bangladesh and ecological and public health implications of pollution. Chemosphere 165:1–9. https://doi.org/10.1016/j.chemosphere.2016.08.121 Lembrechts J (1993) A review of literature on the effectiveness of chemical amendments in reducing the soil-to-plant transfer of radiostrontium and radiocaesium. Sci Total Environ 137:81–98. https://doi.org/10.1016/0048-9697(93)90379-K Marovic G, Sencar J (1995) 226Ra and possible water contamination due to phosphate fertilizer production. J Radioanal Nucl Chem, Letters 200:9–18 Mheemeed AK, Najam LA, Hussein AK (2014) Transfer factors of 40K, 226Ra, 232Th from soil to different types of local vegetables, radiation hazard indices and their annual doses. J Radioanal Nucl Chem 302:87–96. https://doi.org/10.1007/s10967-014-3259-y Mohamed A, Abd El-hady M, Moustafa M, Yuness M (2014) Deposition pattern of inhaled radon progeny size distribution in human lung. J Radiat Res Appl Sci 7:333–337. https://doi.org/10.1016/j.jrras.2014.05.004 Mostafa MYA, Vasyanovich M, Zhukovsky M (2016) Prototype of a primary calibration system for measurement of radon activity concentration. Appl Radiat Isot 107:109–112. https://doi.org/10.1016/j.apradiso.2015.10.014 Mostafa MYA, Zakaly HMH, Uosif MAM, Issa ShAM, Madkour H, Tammam M (2020) Sediment natural radioactivity and heavy metals assessment from the beaches of Ras-. AIP Conf Proc 2313:1–7 Mostafa MYA, Khalaf HNB, Zhukovsky M (2021) Attachment rate characteristics of different wide used aerosol sources in indoor air. J Environ Health Sci Eng. https://doi.org/10.1007/s40201-021-00653-6 Mouhamad R (2020) Radiation hazards assessment of phosphate fertilizers used in Latifiyah region Iraq. DYSONA Appl Sci DAS 1:73–80. https://doi.org/10.30493/DAS.2020.237227 Mustonen R (1985) Radioactivity of fertilizers in Finland. Sci Total Environ 45:127–134. https://doi.org/10.1016/0048-9697(85)90212-8 O’brien R, Sanna R (1976) The distribution of absorbed dose-rates in humans from exposure to environmental gamma rays. Health Phys 30:71–78. https://doi.org/10.1097/00004032-197601000-00007 Pandey C, Diwan H (2018) Comprehensive assessment of fertiliser-linked environmental externalities and its key determinants: IWRM approach. Interdiscip Environ Rev 19:44. https://doi.org/10.1504/ier.2018.10010861 Profile SEE (2014) Radium-226 levels in some plants and soil Radium-226 Uptake by Vegetation Grown in Western Sudan Rahman MS, Hossain SM, Rahman MT et al (2017) Determination of trace metal concentration in compost, DAP, and TSP fertilizers by neutron activation analysis (NAA) and insights from density functional theory calculations. Environ Monit Assess. https://doi.org/10.1007/s10661-017-6328-1 Ridha AA, Jameel AN, Kadhim NF (2020) Transfer factor of natural radionuclides from soil to silhouette plants using gamma spectroscopy. AIP Conf Proc. https://doi.org/10.1063/5.0000316 Righi S, Lucialli P, Bruzzi L (2005) Health and environmental impacts of a fertilizer plant—Part I: assessment of radioactive pollution. J Environ Radioact 82:167–182. https://doi.org/10.1016/j.jenvrad.2004.11.007 Rindi GH, Purwo S (2019) Determination of risk of radioactive in chemical fertilizer using gamma ray spectrometry. Mater Sci Forum 948 MSF:20–25. https://doi.org/10.4028/www.scientific.net/MSF.948.20 Sahu SK, Ajmal PY, Bhangare RC et al (2014) Natural radioactivity assessment of a phosphate fertilizer plant area. J Radiat Res Appl Sci 7:123–128. https://doi.org/10.1016/j.jrras.2014.01.001 Sakr S, Mostafa MYA, Mohamed A, et al (2019) Effect of activity particle size distribution on deposition fraction of inhaled radon decay products in human respiratory system. In: AIP Conference Proceedings. p 020139 Schröder JJ (2014) The position of mineral nitrogen fertilizer in efficient use of nitrogen and land: a review. Nat Resour 05:936–948. https://doi.org/10.4236/nr.2014.515080 Sheppard SC (2011) Review of “Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments.” J Environ Radioact 102:217. https://doi.org/10.1016/j.jenvrad.2010.10.004 Skowroñska M, Filipek T (2014) Life cycle assessment of fertilizers: a review. Int Agrophys 28:101–110. https://doi.org/10.2478/intag-2013-0032 Šturm M, Kacjan-Maršić N, Zupanc V et al (2010) Effect of different fertilisation and irrigation practices on yield, nitrogen uptake and fertiliser use efficiency of white cabbage (Brassica oleracea var. capitata L.). Sci Hortic 125:103–109. https://doi.org/10.1016/j.scienta.2010.03.017 Sutton MA, Howard CM, Erisman JW et al (2011) The challenge to integrate nitrogen science and policies: the European Nitrogen Assessment approach. Eur Nitrogen Assess. https://doi.org/10.1017/cbo9780511976988.008 Tahir SNA, Alaamer AS, Omer RM (2009) Study of contents of 226Ra, 232Th AND 40K in fertilisers. Radiat Prot Dosimetry 134:62–65 Tawfic AF, Zakaly HMH, Awad HA et al (2021) Natural radioactivity levels and radiological implications in the high natural radiation area of Wadi El Reddah, Eqypt. J Radioanal Nucl Chem 327:643–652. https://doi.org/10.1007/s10967-020-07554-2 UNSCEAR (2000) Exposures from natural radiation sources (Annex B). Sour Effects Ionizing Radiat. https://doi.org/10.1097/00004032-199907000-00007 Uosif MAM, Mostafa AMA, Elsaman R, Moustafa E (2014) Natural radioactivity levels and radiological hazards indices of chemical fertilizers commonly used in Upper Egypt. J Radiat Res Appl Sci 7:430–437. https://doi.org/10.1016/j.jrras.2014.07.006 Yuness M, Mohamed A, AbdEl-hady M et al (2015) Effect of indoor activity size distribution of222Rn progeny in-depth dose estimation. Appl Radiat Isot 97:34–39. https://doi.org/10.1016/j.apradiso.2014.12.002 Yuness M, Mohamed A, Nazmy H et al (2016) Indoor activity size distribution of the short-lived radon progeny. Stoch Env Res Risk Assess 30:167–174. https://doi.org/10.1007/s00477-015-1057-x