Tác động của các cường độ vận động khác nhau và vitamin D hoạt tính lên khối lượng và độ bền xương ở chuột.

Springer Science and Business Media LLC - Tập 35 - Trang 265-277 - 2016
Lingli Zhang1, Xi Chen2,1, Juanni Wu1, Yu Yuan1, Jianmin Guo1, Soma Biswas3,4, Baojie Li3, Jun Zou5
1School of Kinesiology, Shanghai University of Sport, Shanghai, China
2School of Sports Science, Wenzhou Medical University, Wenzhou, China
3Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
4School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
5Scientific Research Department, Shanghai University of Sport, Shanghai, China

Tóm tắt

Tập thể dục mang lại nhiều lợi ích cho sức khỏe xương khớp. Tuy nhiên, còn rất ít thông tin về cách thức các cường độ tập luyện khác nhau ảnh hưởng đến khối lượng và độ bền của xương. Trong nghiên cứu này, chúng tôi đã sử dụng chuột con để nghiên cứu tác động của các cường độ tập luyện khác nhau lên khối lượng và độ bền xương so với các liều lượng thuốc của vitamin D hoạt tính (calcitriol). Chúng tôi phát hiện rằng chỉ có cường độ vận động ở mức trung bình được kiểm tra cho thấy tác động tích cực lên mật độ khoáng xương, thể tích xương xốp và độ bền xương, điều này có được nhờ sự giảm thiểu sự hấp thu xương và sự gia tăng quá trình hình thành xương, với sự gia tăng số lượng tế bào gốc trung mô tạo xương trong tủy xương đi kèm. Calcitriol làm tăng thể tích và độ bền xương, tuy nhiên, sự kết hợp giữa calcitriol và tập thể dục với cường độ vừa không làm cải thiện thêm khối lượng hoặc độ bền xương. Hơn nữa, calcitriol cũng cho thấy một số tác dụng bảo vệ đối với xương ở chuột khi vận động với cường độ cao. Những kết quả này chỉ ra rằng tập thể dục với cường độ vừa có thể gia tăng khối lượng và độ bền của xương thông qua việc tác động vào cả quá trình hình thành và hấp thu xương, và rằng những tác dụng có lợi của nó đối với khối lượng xương không thể được cải thiện thêm bằng calcitriol.

Từ khóa

#tập thể dục #vitamin D #khối lượng xương #độ bền xương #calcitriol #tế bào gốc trung mô #quá trình hấp thu xương #quá trình hình thành xương

Tài liệu tham khảo

Karsenty G (2008) Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 9:183–196 Crane JL, Cao X (2014) Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. J Clin Invest 124:466–472 Canalis E (2013) Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9:575–583 Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801 Baldridge D, Shchelochkov O, Kelley B, Lee B (2010) Signaling pathways in human skeletal dysplasias. Annu Rev Genomics Hum Genet 11:189–217 Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300 Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287 Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1:30–34 Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26:1729–1739 Bouxsein ML, Seeman E (2009) Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol 23:741–753 Seeman E, Delmas PD (2006) Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261 Bouxsein ML (2008) Technology insight: noninvasive assessment of bone strength in osteoporosis. Nat Clin Pract Rheumatol 4:310–318 Kim JD, Shuler FD, Mo B, Gibbs SR, Belmaggio T, Giangarra CE (2013) Traumatic laryngeal fracture in a collegiate basketball player. Sports Health 5:273–275 Ogan D, Pritchett K (2013) Vitamin D and the athlete: risks, recommendations, and benefits. Nutrients 5:1856–1868 Moran DS, McClung JP, Kohen T, Lieberman HR (2013) Vitamin D and physical performance. Sports Med 43:601–611 Christakos S, Seth T, Hirsch J, Porta A, Moulas A, Dhawan P (2013) Vitamin D biology revealed through the study of knockout and transgenic mouse models. Annu Rev Nutr 33:71–85 Cannell JJ, Hollis BW, Sorenson MB, Taft TN, Anderson JJ (2009) Athletic performance and vitamin D. Med Sci Sports Exerc 41:1102–1110 Moon RJ, Harvey NC, Davies JH, Cooper C (2014) Vitamin D and skeletal health in infancy and childhood. Osteoporos Int 25:2673–2684 Deluca HF (2014) The development of a bone- and parathyroid-specific analog of vitamin D: 2-methylene-19-Nor-(20S)-1 alpha, 25-dihydroxyvitamin D3. Bonekey Rep 3:514 Matsumoto T, Takano T, Saito H, Takahashi F (2014) Vitamin D analogs and bone: preclinical and clinical studies with eldecalcitol. Bonekey Rep 3:513 Wohl GR, Boyd SK, Judex S, Zernicke RF (2000) Functional adaptation of bone to exercise and injury. J Sci Med Sport 3:313–324 Lertsinthai P, Charoenphandhu J, Suntornsaratoon P, Krishnamra N, Charoenphandhu N (2015) Voluntary wheel running mitigates the stress-induced bone loss in ovariectomized rats. J Bone Miner Metab 33:261–269 Behringer M, Gruetzner S, McCourt M, Mester J (2014) Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. J Bone Miner Res 29:467–478 Silbermann M, Bar-Shira-Maymon B, Coleman R, Reznick A, Weisman Y, Steinhagen-Thiessen E, von der Mark H, von der Mark K (1990) Long-term physical exercise retards trabecular bone loss in lumbar vertebrae of aging female mice. Calcif Tissue Int 46:80–93 Hind K, Burrows M (2007) Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone (NY) 40:14–27 Ishikawa S, Kim Y, Kang M, Morgan DW (2013) Effects of weight-bearing exercise on bone health in girls: a meta-analysis. Sports Med 43:875–892 Tan VP, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, McKay HA (2014) Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res 29:2161–2181 Schwab P, Scalapino K (2011) Exercise for bone health: rationale and prescription. Curr Opin Rheumatol 23:137–141 Nikander R, Sievanen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P (2010) Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med 8:47 Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, Wark JD (1996) Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med 24:810–818 Hind K, Truscott JG, Evans JA (2006) Low lumbar spine bone mineral density in both male and female endurance runners. Bone (NY) 39:880–885 Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417 Burrows M, Shepherd H, Bird S, MacLeod K, Ward B (2007) The components of the female athlete triad do not identify all physically active females at risk. J Sports Sci 25:1289–1297 Daly RM (2007) The effect of exercise on bone mass and structural geometry during growth. Med Sport Sci 51:33–49 Forwood MR (1985) Physical activity and bone development during childhood: insights from animal models. J Appl Physiol 105:334–341 Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD (2010) The effect of training status on the metabolic response of bone to an acute bout of exhaustive treadmill running. J Clin Endocrinol Metab 95:3918–3925 Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD (1985) The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise. J Appl Physiol 110:423–432 Buie HR, Boyd SK (2010) Reduced bone mass accrual in swim-trained prepubertal mice. Med Sci Sports Exerc 42:1834–1842 Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM (2014) Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry. Bone (NY) 66:15–25 Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17:2274–2280 Guadalupe-Grau A, Fuentes T, Guerra B, Calbet JA (2009) Exercise and bone mass in adults. Sports Med 39:439–468 Schefer V, Talan MI (1996) Oxygen consumption in adult and AGED C57BL/6 J mice during acute treadmill exercise of different intensity. Exp Gerontol 31:387–392 Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA, Kokubun E, Brum PC (2007) Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol 34:760–765 Mehl KA, Davis JM, Clements JM, Berger FG, Pena MM, Carson JA (1985) Decreased intestinal polyp multiplicity is related to exercise mode and gender in ApcMin/+ mice. J Appl Physiol 98:2219–2225 Gordon KR, Perl M, Levy C (1989) Structural alterations and breaking strength of mouse femora exposed to three activity regimens. Bone (NY) 10:303–312 Shackelford LC, LeBlanc AD, Driscoll TB, Evans HJ, Rianon NJ, Smith SM, Spector E, Feeback DL, Lai D (1985) Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol 97:119–129 Smith SM, Zwart SR, Heer M, Lee SM, Baecker N, Meuche S, Macias BR, Shackelford LC, Schneider S, Hargens AR (2008) WISE-2005: supine treadmill exercise within lower body negative pressure and flywheel resistive exercise as a countermeasure to bed rest-induced bone loss in women during 60-day simulated microgravity. Bone (NY) 42:572–581 Smith SM, Abrams SA, Davis-Street JE, Heer M, O’Brien KO, Wastney ME, Zwart SR (2014) Fifty years of human space travel: implications for bone and calcium research. Annu Rev Nutr 34:377–400 Mori T, Irie Y, Nishimura SI, Tokura S, Matsuura M, Okumura M, Kadosawa T, Fujinaga T (1998) Endothelial cell responses to chitin and its derivatives. J Biomed Mater Res 43:469–472 Rubin CT, Capilla E, Luu YK, Busa B, Crawford H, Nolan DJ, Mittal V, Rosen CJ, Pessin JE, Judex S (2007) Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci USA 104:17879–17884 Menuki K, Mori T, Sakai A, Sakuma M, Okimoto N, Shimizu Y, Kunugita N, Nakamura T (2008) Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells. Bone (NY) 43:613–620 Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J (2008) Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149:6065–6075 Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, Case N, Xie Z, Sen B, Romaine A, Pagnotti GM, Rubin CT, Styner MA, Horowitz MC, Rubin J (2014) Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone (NY) 64:39–46 Wang H, Brennan TA, Russell E, Kim JH, Egan KP, Chen Q, Israelite C, Schultz DC, Johnson FB, Pignolo RJ (2013) R-Spondin 1 promotes vibration-induced bone formation in mouse models of osteoporosis. J Mol Med (Berl) 91:1421–1429 Wu J, Wang X, Chiba H, Higuchi M, Nakatani T, Ezaki O, Cui H, Yamada K, Ishimi Y (2004) Combined intervention of soy isoflavone and moderate exercise prevents body fat elevation and bone loss in ovariectomized mice. Metabolism 53:942–948 Mezil YA, Allison D, Kish K, Ditor D, Ward WE, Tsiani E, Klentrou P (2015) Response of bone turnover markers and cytokines to high-intensity low-impact exercise. Med Sci Sports Exerc 47(7):1495–1502 de Jong Z, Munneke M, Lems WF, Zwinderman AH, Kroon HM, Pauwels EK, Jansen A, Ronday KH, Dijkmans BA, Breedveld FC, Vliet Vlieland TP, Hazes JM (2004) Slowing of bone loss in patients with rheumatoid arthritis by long-term high-intensity exercise: results of a randomized, controlled trial. Arthritis Rheum 50:1066–1076 Moreira LD, Fronza FC, Dos Santos RN, Zach PL, Kunii IS, Hayashi LF, Teixeira LR, Kruel LF, Castro ML (2014) The benefits of a high-intensity aquatic exercise program (HydrOS) for bone metabolism and bone mass of postmenopausal women. J Bone Miner Metab 32:411–419 Specker B, Vukovich M (2007) Evidence for an interaction between exercise and nutrition for improved bone health during growth. Med Sport Sci 51:50–63 Christianson MS, Shen W (2013) Osteoporosis prevention and management: nonpharmacologic and lifestyle options. Clin Obstet Gynecol 56:703–710 Klausen T, Breum L, Sorensen HA, Schifter S, Sonne B (1993) Plasma levels of parathyroid hormone, vitamin D, calcitonin, and calcium in association with endurance exercise. Calcif Tissue Int 52:205–208 Bell NH, Godsen RN, Henry DP, Shary J, Epstein S (1988) The effects of muscle-building exercise on vitamin D and mineral metabolism. J Bone Miner Res 3:369–373 Morris HA, Anderson PH (2011) Vitamin D metabolism and biological activities. Mol Cell Endocrinol 347:1–2 Kogawa M, Findlay DM, Anderson PH, Ormsby R, Vincent C, Morris HA, Atkins GJ (2010) Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption. Endocrinology 151:4613–4625 Barker T, Martins TB, Hill HR, Kjeldsberg CR, Dixon BM, Schneider ED, Henriksen VT, Weaver LK (2014) Vitamin D sufficiency associates with an increase in anti-inflammatory cytokines after intense exercise in humans. Cytokine 65:134–137 Choi M, Park H, Cho S, Lee M (2013) Vitamin D3 supplementation modulates inflammatory responses from the muscle damage induced by high-intensity exercise in SD rats. Cytokine 63:27–35