The effects of biochar and inorganic amendments on soil remediation in the presence of hyperaccumulator plant

Zahra Derakhshan Nejad1, Myung Chae Jung2
1Department of Earth System Sciences, Yonsei University, Seoul, South Korea
2Department of Energy and Mineral Resources Engineering, Sejong University, Seoul, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gaur, A., Adholeya, A.: Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr. Sci. India 86(4), 528–534 (2004)

Adriano, D.C.: Trace elements in the terrestrial environment. Springer, New York (1986)

Merrington, G., Alloway, B.J.: The transfer and fate of Cd, Cu, Pb and Zn from historic metalliferous mine sites in the UK. Appl. Geochem. 9, 677–687 (1994)

Sengupta, A.: Solidification and Stabilization of Contaminated Soil. Dissertations and theses, university of Orleans (2007)

Martin, T.A., Ruby, M.V.: Review of in situ remediation technologies for lead, zinc and cadmium in soil. Remediation 14(3), 35–53 (2004). doi: 10.1002/rem.20011

Bolan, N.S., Duraisamy, P., Mani, S.: Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Aust. J. Soil Res. 41(1), 533–555 (2003)

Ajmal, M., Rao, R.A.K., Anwar, S., Ahmad, J., Ahmad, R.: Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresour. Technol. 86(2), 147–149 (2003)

Kumar, U., Bandyopadhyay, M.: Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour. Technol. 97(1), 104–109 (2006)

Yamato, M., Okimori, Y., Wibowo, I.F., Anshori, S., Ogawa, M.: Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. J. Soil Sci. Plant Nutr. 52, 489–495 (2006). doi: 10.1111/j.1747-0765.2006.00065.x

Tagoe, S.O., Horiuchi, T., Matsui, T.: Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant Soil 306(1), 211–220 (2008)

Rodríguez, L., Salazar, P., Preston, T.R.: Effect of biochar and biodigester effluent on growth of maize in acid soils. Livestock Research for Rural Development, Colombia, http://www.lrrd.org/lrrd21/7/rodr21110.htm (2009). Accessed 1 July 2015

Beesley, L., Marmiroli, M.: The immobilization and retention of soluble arsenic, cadmium, and zinc by biochar. Environ. Pollut. 159, 474–480 (2011)

Lee, S.H., Lee, J.S., Choi, Y.J., Kim, J.G.: In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77(8), 1069–1075 (2009)

Wong, M.H.: Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6), 775–780 (2003)

NamKoong, W., Jeong, T.H.: Effect of steel slag addition on immobilization of heavy metal-contaminated soil with phosphate. J. Korea Soc. Waste Manag. 29(8), 769–776 (2012)

Tordoff, G.M., Baker, A.J., Willis, A.J.: Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41, 219–228 (2000)

Alkorta, I., Hernández-Allica, J., Becerril, J.M., Amezaga, I., Albizu, I., Garbisu, C.: Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev. Environ. Sci. Biotechnol. J. 3, 71–90 (2004)

Mench, M., Vangronsveld, J., Bleeker, P., Ruttens, A., Geebelen, W., Lepp, N.: Phytostabilisation of metal-contaminated sites. In: Morel, J.L., Echevarria, G., Goncharova, N. (eds.) Phytoremediation of Metal-Contaminated Soils, pp. 109–190. Springer, Dordrecht (2006)

Madejon, E., de Mora, A.P., Felipe, E., Burgos, P., Cabrera, F.: Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ. Pollut. 139(1), 40–52 (2006)

Park, J.H., Choppala, G.K., Bolan, N.S., Chung, J.W., Chuasavathi, T.: Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439–451 (2015)

MicrotracBEL, Specific surface area and particle size. Seminar on adsorption. Total solution in particle characterization, http://www.nippon-bel.co.jp/tech/seminar06_e.html (2015). Accessed 15 Jan 2015

Bouyoucos, G.J.: Directions for making mechanical analysis of soils by the hydrometer method. Soil Sci. 42(3), 225–228 (1936)

Thomas, G.W.: Soil pH and soil acidity, In: Sparks, D.L. (ed.) Methods of Soil Analysis, Part 3. Chemical Methods, pp. 475–490. Soil Science Society of America and American Society of Agronomy, Madison (1996)

Hesse, P.R.: A Textbook of Soil Chemical Analysis. John Murray Ltd., London (1971)

Ure, A.M.: Methods of analysis for heavy metals in soils. In: Alloway, B.J. (ed.) Heavy Metals in Soils, pp. 47–59. Blackie, London (1990)

Chen, C.X., Huang, B., Li, T., Wu, G.F.: Preparation of phosphoric acid activated carbon from sugarcane bagasse by mechanochemical processing. BioResources 7(4), 5109–5116 (2012)

Tessier, A., Campbell, P.G.C., Bisson, M.: Sequential extraction for the speciation of particulate trace metals. Anal. Chem. 51, 844–851 (1979)

Kim, H.S., Kim, K.R., Kim, H.J., Yoon, J.H., Yang, J.E., Ok, Y.S., Owens, G., Kim, K.H.: Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth Sci. 74, 1249–1259 (2015)

Puga, A.P., Abreu, C.A., Melo, L.C., Beesley, L.: Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead, and cadmium. J. Environ. Manag. 159, 86–93 (2015)

Jo, I.S., Koh, M.H.: Chemical changes in agricultural soils of Korea: data review and suggested countermeasures. Environ. Geochem. Health 76(2), 105–117 (2004)

Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J.L., Harris, E., Robinson, B., Sizmur, T.: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 159(12), 3269–3282 (2011)

Nejad, Z.D., Kim, J.W., Jung, M.C.: Reclamation of arsenic contaminated soils around mining site using solidification/stabilization combined with revegetation. Geosci. J. 21(3), 385–396 (2017). doi: 10.1007/s12303-016-0059-0

Liou, T.H.: Preparation and characterization of nanostructured silica from rice husk. Mater. Sci. Eng. 364(1), 313–323 (2004)

Radhika, T., Sugunan, S.: Structural and catalytic investigation of vanadia supported on ceria promoted with high surface area rice husk silica. J. Mol. Catal. 250(1–2), 169–176 (2006)

Chen, Y., Zhu, Y., Wang, Z., Li, Y., Wang, L., Ding, L., Gao, X., Ma, Y., Guo, Y.: Application studies of activated carbon derived from rice husks produced by chemical thermal process—a review. Adv. Colloid Interface Sci. 163(1), 39–52 (2011)

Hong, K.S., Lee, H.M., Bae, J.S., Ha, M.G., Jin, J.S., Hong, T.E., Kim, J.P., Jeong, E.D.: Removal of heavy metal ions by using calcium carbonate extracted from starfish treated by protease and amylase. J. Anal. Sci. Technol. 2, 75–82 (2011)

Zhang, Y., Pan, Z.: Characterization of red mud thermally treated at different temperatures. J. Jinan. Univ. Sci. Technol. 19, 293–297 (2005)

Chen, H., Sun, H., Li, H.: Effect of heat treatment temperature on cementitious activity of red mud. J. Light Metals 9, 22–25 (2006)

Liu, X., Zhang, N., Sun, H., Zhang, J., Li, L.: Structural investigation relating to the cementitious activity of bauxite residue-red mud. Cem. Concr. Res. 41(8), 847–853 (2011)

Prakongkep, N., Gilkes, R.J., Wiriyakitnateekul, W., Duangchan, A., Darunsontaya, T.: The effects of pyrolysis conditions on the chemical and physical properties of rice husk biochar. Int. J. Mater. Sci. 3(3), 97–103 (2013)

Xu, T., Chen, Y., Jong, P., Oterdoom, H., Chang, C.H.: Acer Linnaeus. Flora of China, pp. 493–516. Missouri Botanical Garden and Harvard University Herbaria, Cambridge. http://www.eflora.org (2012)

Park, B.D., Wi, S.G., Lee, K.H., Singh, A.P., Yoon, T.H., Kim, Y.S.: Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques. Biomass Bioenergy 25(3), 319–327 (2003)

Gray, C.W., Dunham, S.J., Dennis, P.G., Zhao, F.J., McGrath, S.P.: Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ. Pollut. 142(3), 530–539 (2006)

Zheng, R.L., Cai, C., Liang, J.H., Huang, Q., Chen, Z., Huang, Y.Z., Arp, H.P.H., Sun, G.X.: The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89(7), 856–862 (2012)

Kim, K.R., Kim, J.G., Park, J.S., Kim, M.S., Owens, G., Youn, G.H., Lee, J.S.: Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production. J. Environ. Manag. 105, 88–95 (2012)

Alloway, B.J.: Heavy metals in soils. In: Lindholm, T., Heikkilä, R., Heikkilä, M. (eds.) Ecosystems, Fauna and Flora of the Finnish–Russian Nature Reserve Friendship, The Finnish Environment. Nature and Natural Resources 124. Springer, Berlin (1995)

Jung, M.C., Thornton, I.: Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb–Zn mine in Korea. Sci. Total Environ. 198(2), 105–121 (1997)