The effects of acarbose on chemokine and cytokine production in human monocytic THP-1 cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Coope A, Torsoni AS, Velloso LA (2016) Metabolic and inflammatory pathways on the pathogenesis of type 2 diabetes. Eur J Endocrinol 174(5):R175–R187
Kohn LD, Wallace B, Schwartz F, McCall K (2005) Is type 2 diabetes an autoimmune-inflammatory disorder of the innate immune system? Endocrinology 146(10):4189–4191
Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA (2015) Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J Diabetes 6(4):598–612
Domingueti CP, Dusse LM, Carvalho M, de Sousa LP, Gomes KB, Fernandes AP (2016) Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complicat 30(4):738–745
Herder C, Baumert J, Thorand B, Koenig W, de Jager W, Meisinger C, Illig T, Martin S, Kolb H (2006) Chemokines as risk factors for type 2 diabetes: results from the MONICA/KORA Augsburg study, 1984-2002. Diabetologia 49(5):921–929
Yao L, Herlea-Pana O, Heuser-Baker J, Chen Y, Barlic-Dicen J (2014) Roles of the chemokine system in development of obesity, insulin resistance, and cardiovascular disease. J Immunol Res 2014:181450
Panee J (2012) Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 60(1):1–12
Perlman AS, Chevalier JM, Wilkinson P, Liu H, Parker T, Levine DM, Sloan BJ, Gong A, Sherman R, Farrell FX (2015) Serum inflammatory and immune mediators are elevated in early stage diabetic nephropathy. Ann Clin Lab Sci 45(3):256–263
Luther SA, Cyster JG (2001) Chemokines as regulators of T cell differentiation. Nat Immunol 2(2):102–107
Manieri E, Sabio G (2015) Stress kinases in the modulation of metabolism and energy balance. J Mol Endocrinol 55(2):R11–R22
Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13(1):11–22
Villeneuve LM, Reddy MA, Natarajan R (2011) Epigenetics: deciphering its role in diabetes and its chronic complications. Clin Exp Pharmacol Physiol 38(7):451–459
Kowluru RA, Santos JM, Mishra M (2013) Epigenetic modifications and diabetic retinopathy. Biomed Res Int 2013:635284
Miao F, Gonzalo IG, Lanting L, Natarajan R (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279(17):18091–18097
Villeneuve LM, Natarajan R (2010) The role of epigenetics in the pathology of diabetic complications. Am J Physiol Ren Physiol 299(1):F14–F25
McCarty MF, DiNicolantonio JJ (2015) Acarbose, lente carbohydrate, and prebiotics promote metabolic health and longevity by stimulating intestinal production of GLP-1. Open Heart 2(1):e000205
Bischoff H (1995) The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Invest Med 18(4):303–311
Su B, Liu H, Li J, Sunli Y, Liu B, Liu D, Zhang P, Meng X (2015) Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J Diabetes 7(5):729–739
Li FF, Fu LY, Xu XH, Su XF, Wu JD, Ye L, Ma JH (2016) Analysis of the add-on effect of alpha-glucosidase inhibitor, acarbose in insulin therapy: a pilot study. Biomed Rep 5(4):461–466
Salehi A, Panagiotidis G, Borg LA, Lundquist I (1995) The pseudotetrasaccharide acarbose inhibits pancreatic islet glucan-1,4-alpha-glucosidase activity in parallel with a suppressive action on glucose-induced insulin release. Diabetes 44(7):830–836
Nakano T, Inoue I, Seo M, Takahashi S, Komoda T, Katayama S (2009) Acarbose attenuates postprandial hyperlipidemia: investigation in an intestinal absorptive cell model. Metabolism 58(5):583–585
Zhang Y, Zhang H, Wang F, Yang D, Ding K, Fan J (2015) The ethanol extract of Eucommia ulmoides Oliv. leaves inhibits disaccharidase and glucose transport in Caco-2 cells. J Ethnopharmacol 163:99–105
Lee JY (2003) Histone acetylation and chromatin conformation are regulated separately at the TNF-alpha promoter in monocytes and macrophages. J Leukoc Biol 73(6):862–871
Happel C, Kutzler M, Rogers TJ (2011) Opioid-induced chemokine expression requires NF-kappaB activity: the role of PKCzeta. J Leukoc Biol 89(2):301–309
Lin YC, Lin YC, Huang MY, Kuo PL, Wu CC, Lee MS, Hsieh CC, Kuo HF, Kuo CH, Tsai WC, Hung CH (2017) Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol 83:82–91
Kuo CH, Ko YC, Yang SN, Chu YT, Wang WL, Huang SK, Chen HN, Wei WJ, Jong YJ, Hung CH (2011) Effects of PGI2 analogues on Th1- and Th2-related chemokines in monocytes via epigenetic regulation. J Mol Med (Berl) 89(1):29–41
Zhang TM, Malaisse W (1994) Acarbose internalisation in pancreatic islet cells. Med Sci Res 22(7):479–480
Nakamura K, Yamagishi S, Matsui T, Yoshida T, Imaizumi T, Makino T, Shimizu T, Inoue H (2006) Acarbose, an alpha-glucosidase inhibitor, decreases aortic gene expression and serum levels of monocyte chemoattractant protein-1 in fructose-fed rats. J Int Med Res 34(5):525–530
O'Garra A, Arai N (2000) The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 10(12):542–550
Kidd P (2003) Th1Th2 balance the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8(3):223–246
Romagnani P, Maggi L, Mazzinghi B, Cosmi L, Lasagni L, Liotta F, Lazzeri E, Angeli R, Rotondi M, Fili L, Parronchi P, Serio M, Maggi E, Romagnani S, Annunziato F (2005) CXCR3-mediated opposite effects of CXCL10 and CXCL4 on TH1 or TH2 cytokine production. J Allergy Clin Immunol 116(6):1372–1379
Mantovani A, Gray PA, Van Damme J, Sozzani S (2000) Macrophage-derived chemokine (MDC). J Leukoc Biol 68(3):400–404
Ozaki KI, Awazu M, Tamiya M, Iwasaki Y, Harada A, Kugisaki S, Tanimura S, Kohno M (2016) Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. Am J Physiol Endocrinol Metab 310(8):E643–E651
Shanmugam N, Reddy MA, Guha M, Natarajan R (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52(5):1256–1264