The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries
Tài liệu tham khảo
An, 2014, Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode, Nano Lett., 14, 6250, 10.1021/nl5025694
Cao, 2019, Atomic layer deposition of ZnO/TiO2 nanolaminates as ultra-long life anode material for lithium-ion batteries, Sci. Rep., 9, 11526, 10.1038/s41598-019-48088-2
Jiao, 2020, Effects of Carbon Content and Current Density on the Li+ Storage Performance for MnO@C Nanocomposite Derived from Mn-Based Complexes, Nanomaterials, 10, 10.3390/nano10091629
Li, 2018, 30 Years of Lithium-Ion Batteries, Adv. Mater., 30, e1800561, 10.1002/adma.201800561
Liang, 2019, A new high-capacity and safe energy storage system: lithium-ion sulfur batteries, Nanoscale, 11, 19140, 10.1039/C9NR05670J
Scrosati, 2011, Lithium-ion batteries, A look into the future, Energy & Environmental Science, 4, 3287
Shen, 2019, Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nat. Commun., 10, 900, 10.1038/s41467-019-08767-0
Xu, 2019, Bimetallic metal-organic framework derived Sn-based nanocomposites for high-performance lithium storage, Electrochim. Acta, 323, 10.1016/j.electacta.2019.134855
Han, 2017, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 16, 572, 10.1038/nmat4821
Kim, 2019, A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries, Nat. Commun., 10, 1081, 10.1038/s41467-019-09061-9
Meng, 2020, Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting, Nat. Commun., 11, 3716, 10.1038/s41467-020-17493-x
Seino, 2014, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 7, 627, 10.1039/C3EE41655K
Yang, 2019, A SuperLEphilic/Superhydrophobic and Thermostable Separator Based on Silicone Nanofilaments for Li Metal Batteries, iScience, 16, 420, 10.1016/j.isci.2019.06.010
Janek, 2016, A solid future for battery development, Nat. Energy, 1, 16141, 10.1038/nenergy.2016.141
Ji, 2021, Synthesis and Na+ Ion Conductivity of Stoichiometric Na3Zr2Si2PO12 by Liquid-Phase Sintering with NaPO3 Glass, Materials, 14, 3790, 10.3390/ma14143790
Notohara, 2018, High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon, Sci. Rep., 8, 8747, 10.1038/s41598-018-27040-w
Wang, 2018, Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density, Chem. Soc. Rev., 47, 6505, 10.1039/C8CS00322J
L. Wang, R. Xie, B. Chen, X. Yu, J. Ma, C. Li, Z. Hu, X. Sun, C. Xu, S. Dong, T.S. Chan, J. Luo, G. Cui, L. Chen, In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries, Nat. Commun. 11 (2020) 5889, 10.1038/s41467-020-19726-5.[19] L. Gao, J. Li, J. Ju, L. Wang, J. Yan, B. Cheng, W. Kang, N. Deng, Y. Li, Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries, Chem. Eng. J. 389 (2020) 124478, 10.1016/j.cej.2020.124478.
Liu, 2022, Gradient trilayer solid-state electrolyte with excellent interface compatibility for high-voltage lithium batteries, Chem. Eng. J., 441, 10.1016/j.cej.2022.136077
Sun, 2022, A review of interfaces within solid-state electrolytes: fundamentals, issues and advancements, Chem. Eng. J., 437, 10.1016/j.cej.2022.135179
Wei, 2022, Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries, Mater. Today Commun., 31
Wei, 2020, Ultrathin Solid Composite Electrolyte Based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/Succinonitrile for High-Performance Solid-State Lithium Metal Batteries, ACS Appl, Energ. Mater., 3, 9428
Wei, 2021, Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Min. Met. Mater., 28, 1636, 10.1007/s12613-021-2289-z
Malik, 2019, Porous Metal-Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-Ion Batteries, Chem. Mater., 31, 4156, 10.1021/acs.chemmater.9b00933
Redfern, 2019, Mechanical properties of metal-organic frameworks, Chem. Sci., 10, 10666, 10.1039/C9SC04249K
Su, 2020, Zirconium metal-organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for in situ confinement of metal nanoparticles, Chem. Sci., 11, 1918, 10.1039/C9SC06009J
Yu, 2020, A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures, Nat. Commun., 11, 927, 10.1038/s41467-020-14671-9
Shen, 2018, Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks, Adv. Mater., 30, e1707476, 10.1002/adma.201707476
Katz, 2013, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun., 49, 9449, 10.1039/c3cc46105j
Yang, 2020, Effect of intermolecular interactions on the performance of UiO-66-laden solid composite polymer electrolytes, J. Alloys. Compd., 845, 10.1016/j.jallcom.2020.155179
Xu, 2022, Oriented UiO-67 Metal-Organic Framework Membrane with Fast and Selective Lithium-Ion Transport, Angew. Chem. Int. Ed. Engl., 61, e202115443, 10.1002/anie.202115443
Chavan, 2012, H2 storage in isostructural UiO-67 and UiO-66 MOFs, Phys. Chem. Chem. Phys., 14, 1614, 10.1039/C1CP23434J
Wei, 2014, A modified liquid-phase-assisted sintering mechanism for La0.8Sr0.2Cr1−xFexO3−δ—A high density, redox-stable perovskite interconnect for solid oxide fuel cells, J. Power Sources, 250, 152, 10.1016/j.jpowsour.2013.11.012
Wei, 2014, A high power density solid oxide fuel cell based on nano-structured La0.8Sr0.2Cr0.5Fe0.5O3-δ anode, Electrochim. Acta, 148, 33, 10.1016/j.electacta.2014.10.020
Zhuang, 2017, The Effect of N-Containing Supports on Catalytic CO Oxidation Activity over Highly Dispersed Pt/UiO-67, Eur. J. Inorg. Chem., 2017, 172, 10.1002/ejic.201600867
Wang, 2022, Metal-Organic Frameworks Derived Electrolytes Build Multiple Wetting Interfaces for Integrated Solid-State Lithium-Oxygen Battery, Adv. Funct. Mater., 32
Fei, 2014, A robust, catalytic metal-organic framework with open 2,2'-bipyridine sites, Chem. Commun., 50, 4810, 10.1039/C4CC01607F
Y. Benseghir, A. Lemarchand, M. Duguet, P. Mialane, M. Gomez-Mingot, C. Roch-Marchal, T. Pino, M.H. Ha-Thi, M. Haouas, M. Fontecave, A. Dolbecq, C. Sassoye, C. Mellot-Draznieks, Co-immobilization of a Rh Catalyst and a Keggin Polyoxometalate in the UiO-67 Zr-Based Metal-Organic Framework: In Depth Structural Characterization and Photocatalytic Properties for CO2 Reduction, J. Am. Chem. Soc. 142 (2020) 9428-9438, 10.1021/jacs.0c02425.
Pan, 2018, Addressing Passivation in Lithium-Sulfur Battery Under Lean Electrolyte Condition, Adv. Funct. Mater., 28, 1707234, 10.1002/adfm.201707234
Ji, 2017, Novel Single Lithium-Ion Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl methacrylate-co-lithium allyl sulfonate) for Lithium-Ion Batteries, ChemElectroChem, 4, 2352, 10.1002/celc.201700256
Xu, 2019, A Metal-Organic Framework of Organic Vertices and Polyoxometalate Linkers as a Solid-State Electrolyte, J. Am. Chem. Soc., 141, 17522, 10.1021/jacs.9b10418
Georén, 2004, Characterisation and modelling of the transport properties in lithium battery gel electrolytes, Electrochim. Acta, 49, 3497, 10.1016/j.electacta.2004.03.020
Zhang, 2018, A durable and safe solid-state lithium battery with a hybrid electrolyte membrane, Nano Energy, 45, 413, 10.1016/j.nanoen.2018.01.028
Chen, 2018, “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery, Nano Energy, 47, 35, 10.1016/j.nanoen.2018.02.036
Yan, 2011, Development of a new polymer membrane — PVB/PVDF blended membrane, Desalination, 281, 455, 10.1016/j.desal.2011.08.024
Yamada, 2019, Advances and issues in developing salt-concentrated battery electrolytes, Nat. Energy, 4, 269, 10.1038/s41560-019-0336-z
Li, 2022, Insights of potassium hexafluorophosphate additive in solid polymer electrolyte for realizing high performance all-solid-state lithium metal batteries, Electrochim. Acta, 429, 10.1016/j.electacta.2022.141061
Ren, 2022, Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery, Energy Storage Mater., 51, 130, 10.1016/j.ensm.2022.06.037
Gao, 2018, LiAlCl4·3SO2 as a high conductive, non-flammable and inorganic non-aqueous liquid electrolyte for lithium ion batteries, Electrochim. Acta, 286, 77, 10.1016/j.electacta.2018.08.033
Sun, 2021, Efficient preservation of surface state of LiNi0.82Co0.15Al0.03O2 through assembly of hydride terminated polydimethylsiloxane, J. Power Sources, 495, 10.1016/j.jpowsour.2021.229761