The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries

Journal of Electroanalytical Chemistry - Tập 926 - Trang 116935 - 2022
Qi Zhang1, Tao Wei1, Jiahao Lu1, Cheng Sun1, Yanyan Zhou1, Mengting Wang1, Ye Liu1, Beibei Xiao1, Xiangyun Qiu2, Shoudong Xu3
1School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2Power & Energy Storage System Research Center, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
3College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi Province 030024, China

Tài liệu tham khảo

An, 2014, Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode, Nano Lett., 14, 6250, 10.1021/nl5025694 Cao, 2019, Atomic layer deposition of ZnO/TiO2 nanolaminates as ultra-long life anode material for lithium-ion batteries, Sci. Rep., 9, 11526, 10.1038/s41598-019-48088-2 Jiao, 2020, Effects of Carbon Content and Current Density on the Li+ Storage Performance for MnO@C Nanocomposite Derived from Mn-Based Complexes, Nanomaterials, 10, 10.3390/nano10091629 Li, 2018, 30 Years of Lithium-Ion Batteries, Adv. Mater., 30, e1800561, 10.1002/adma.201800561 Liang, 2019, A new high-capacity and safe energy storage system: lithium-ion sulfur batteries, Nanoscale, 11, 19140, 10.1039/C9NR05670J Scrosati, 2011, Lithium-ion batteries, A look into the future, Energy & Environmental Science, 4, 3287 Shen, 2019, Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nat. Commun., 10, 900, 10.1038/s41467-019-08767-0 Xu, 2019, Bimetallic metal-organic framework derived Sn-based nanocomposites for high-performance lithium storage, Electrochim. Acta, 323, 10.1016/j.electacta.2019.134855 Han, 2017, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 16, 572, 10.1038/nmat4821 Kim, 2019, A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries, Nat. Commun., 10, 1081, 10.1038/s41467-019-09061-9 Meng, 2020, Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting, Nat. Commun., 11, 3716, 10.1038/s41467-020-17493-x Seino, 2014, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 7, 627, 10.1039/C3EE41655K Yang, 2019, A SuperLEphilic/Superhydrophobic and Thermostable Separator Based on Silicone Nanofilaments for Li Metal Batteries, iScience, 16, 420, 10.1016/j.isci.2019.06.010 Janek, 2016, A solid future for battery development, Nat. Energy, 1, 16141, 10.1038/nenergy.2016.141 Ji, 2021, Synthesis and Na+ Ion Conductivity of Stoichiometric Na3Zr2Si2PO12 by Liquid-Phase Sintering with NaPO3 Glass, Materials, 14, 3790, 10.3390/ma14143790 Notohara, 2018, High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon, Sci. Rep., 8, 8747, 10.1038/s41598-018-27040-w Wang, 2018, Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density, Chem. Soc. Rev., 47, 6505, 10.1039/C8CS00322J L. Wang, R. Xie, B. Chen, X. Yu, J. Ma, C. Li, Z. Hu, X. Sun, C. Xu, S. Dong, T.S. Chan, J. Luo, G. Cui, L. Chen, In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries, Nat. Commun. 11 (2020) 5889, 10.1038/s41467-020-19726-5.[19] L. Gao, J. Li, J. Ju, L. Wang, J. Yan, B. Cheng, W. Kang, N. Deng, Y. Li, Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries, Chem. Eng. J. 389 (2020) 124478, 10.1016/j.cej.2020.124478. Liu, 2022, Gradient trilayer solid-state electrolyte with excellent interface compatibility for high-voltage lithium batteries, Chem. Eng. J., 441, 10.1016/j.cej.2022.136077 Sun, 2022, A review of interfaces within solid-state electrolytes: fundamentals, issues and advancements, Chem. Eng. J., 437, 10.1016/j.cej.2022.135179 Wei, 2022, Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries, Mater. Today Commun., 31 Wei, 2020, Ultrathin Solid Composite Electrolyte Based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/Succinonitrile for High-Performance Solid-State Lithium Metal Batteries, ACS Appl, Energ. Mater., 3, 9428 Wei, 2021, Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Min. Met. Mater., 28, 1636, 10.1007/s12613-021-2289-z Malik, 2019, Porous Metal-Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-Ion Batteries, Chem. Mater., 31, 4156, 10.1021/acs.chemmater.9b00933 Redfern, 2019, Mechanical properties of metal-organic frameworks, Chem. Sci., 10, 10666, 10.1039/C9SC04249K Su, 2020, Zirconium metal-organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for in situ confinement of metal nanoparticles, Chem. Sci., 11, 1918, 10.1039/C9SC06009J Yu, 2020, A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures, Nat. Commun., 11, 927, 10.1038/s41467-020-14671-9 Shen, 2018, Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks, Adv. Mater., 30, e1707476, 10.1002/adma.201707476 Katz, 2013, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun., 49, 9449, 10.1039/c3cc46105j Yang, 2020, Effect of intermolecular interactions on the performance of UiO-66-laden solid composite polymer electrolytes, J. Alloys. Compd., 845, 10.1016/j.jallcom.2020.155179 Xu, 2022, Oriented UiO-67 Metal-Organic Framework Membrane with Fast and Selective Lithium-Ion Transport, Angew. Chem. Int. Ed. Engl., 61, e202115443, 10.1002/anie.202115443 Chavan, 2012, H2 storage in isostructural UiO-67 and UiO-66 MOFs, Phys. Chem. Chem. Phys., 14, 1614, 10.1039/C1CP23434J Wei, 2014, A modified liquid-phase-assisted sintering mechanism for La0.8Sr0.2Cr1−xFexO3−δ—A high density, redox-stable perovskite interconnect for solid oxide fuel cells, J. Power Sources, 250, 152, 10.1016/j.jpowsour.2013.11.012 Wei, 2014, A high power density solid oxide fuel cell based on nano-structured La0.8Sr0.2Cr0.5Fe0.5O3-δ anode, Electrochim. Acta, 148, 33, 10.1016/j.electacta.2014.10.020 Zhuang, 2017, The Effect of N-Containing Supports on Catalytic CO Oxidation Activity over Highly Dispersed Pt/UiO-67, Eur. J. Inorg. Chem., 2017, 172, 10.1002/ejic.201600867 Wang, 2022, Metal-Organic Frameworks Derived Electrolytes Build Multiple Wetting Interfaces for Integrated Solid-State Lithium-Oxygen Battery, Adv. Funct. Mater., 32 Fei, 2014, A robust, catalytic metal-organic framework with open 2,2'-bipyridine sites, Chem. Commun., 50, 4810, 10.1039/C4CC01607F Y. Benseghir, A. Lemarchand, M. Duguet, P. Mialane, M. Gomez-Mingot, C. Roch-Marchal, T. Pino, M.H. Ha-Thi, M. Haouas, M. Fontecave, A. Dolbecq, C. Sassoye, C. Mellot-Draznieks, Co-immobilization of a Rh Catalyst and a Keggin Polyoxometalate in the UiO-67 Zr-Based Metal-Organic Framework: In Depth Structural Characterization and Photocatalytic Properties for CO2 Reduction, J. Am. Chem. Soc. 142 (2020) 9428-9438, 10.1021/jacs.0c02425. Pan, 2018, Addressing Passivation in Lithium-Sulfur Battery Under Lean Electrolyte Condition, Adv. Funct. Mater., 28, 1707234, 10.1002/adfm.201707234 Ji, 2017, Novel Single Lithium-Ion Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl methacrylate-co-lithium allyl sulfonate) for Lithium-Ion Batteries, ChemElectroChem, 4, 2352, 10.1002/celc.201700256 Xu, 2019, A Metal-Organic Framework of Organic Vertices and Polyoxometalate Linkers as a Solid-State Electrolyte, J. Am. Chem. Soc., 141, 17522, 10.1021/jacs.9b10418 Georén, 2004, Characterisation and modelling of the transport properties in lithium battery gel electrolytes, Electrochim. Acta, 49, 3497, 10.1016/j.electacta.2004.03.020 Zhang, 2018, A durable and safe solid-state lithium battery with a hybrid electrolyte membrane, Nano Energy, 45, 413, 10.1016/j.nanoen.2018.01.028 Chen, 2018, “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery, Nano Energy, 47, 35, 10.1016/j.nanoen.2018.02.036 Yan, 2011, Development of a new polymer membrane — PVB/PVDF blended membrane, Desalination, 281, 455, 10.1016/j.desal.2011.08.024 Yamada, 2019, Advances and issues in developing salt-concentrated battery electrolytes, Nat. Energy, 4, 269, 10.1038/s41560-019-0336-z Li, 2022, Insights of potassium hexafluorophosphate additive in solid polymer electrolyte for realizing high performance all-solid-state lithium metal batteries, Electrochim. Acta, 429, 10.1016/j.electacta.2022.141061 Ren, 2022, Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery, Energy Storage Mater., 51, 130, 10.1016/j.ensm.2022.06.037 Gao, 2018, LiAlCl4·3SO2 as a high conductive, non-flammable and inorganic non-aqueous liquid electrolyte for lithium ion batteries, Electrochim. Acta, 286, 77, 10.1016/j.electacta.2018.08.033 Sun, 2021, Efficient preservation of surface state of LiNi0.82Co0.15Al0.03O2 through assembly of hydride terminated polydimethylsiloxane, J. Power Sources, 495, 10.1016/j.jpowsour.2021.229761