The effects of Contracaecum osculatum larvae on the growth of Atlantic cod (Gadus morhua)
Tài liệu tham khảo
Altschul, 1990, Basic local alignment search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2
Ask, 2019
Bryhn, 2022, Which factors can affect the productivity and dynamics of cod stocks in the Baltic Sea, Kattegat and Skagerrak?, Ocean Coast Manag., 223, 10.1016/j.ocecoaman.2022.106154
Casini, 2016, Hypoxic areas, density-dependence and food limitation drive the body condition of a heavily exploited marine fish predator, R. Soc. Open Sci., 3, 10.1098/rsos.160416
Eero, 2015, Food for Thought Eastern Baltic cod in distress: biological changes and challenges for stock assessment, ICES J. Mar. Sci., 72, 2180, 10.1093/icesjms/fsv109
Eero, 2012, Spatial management of marine resources can enhance the recovery of predators and avoid local depletion of forage fish, Conserv. Lett., 5, 486, 10.1111/j.1755-263X.2012.00266.x
Galatius, 2020, Grey seal (Halichoerus grypus) recolonisation of the southern Baltic Sea, Danish straits and Kattegat, Wildl. Biol., 2020, 10.2981/wlb.00711
Guderley, 2003, Metabolic priorities during starvation: enzyme sparing in liver and white muscle of Atlantic cod, Gadus morhua L, Comp. Biochem. Physiol. Mol. Integr. Physiol., 135, 347, 10.1016/S1095-6433(03)00089-8
Haarder, 2014, Increased Contracaecum osculatum infection in Baltic cod (Gadus morhua) livers (1982-2012) associated with increasing Grey seal (Halichoerus gryphus) populations, J. Wildl. Dis., 50, 537, 10.7589/2012-12-320
Hemmingsen, 1993, The occurrence of larval ascaridoid nematodes in wild-caught and in caged and artificially fed Atlantic cod, Gadus morhua L., in Norwegian waters, Fish. Res., 15, 379, 10.1016/0165-7836(93)90088-O
Horbowy, 2016, Increasing occurrence of anisakid nematodes in the liver of cod (Gadus morhua) from the Baltic Sea: does infection affect the condition and mortality of fish?, Fish. Res., 179, 98, 10.1016/j.fishres.2016.02.011
Hüssy, 2010, Why is age determination of Baltic cod (Gadus morhua) so difficult?, ICES (Int. Counc. Explor. Sea) J. Mar. Sci., 67, 1198, 10.1093/icesjms/fsq023
Hüssy, 2018, Faster or slower: has growth of eastern Baltic cod changed?, Mar. Biol. Res., 14, 598, 10.1080/17451000.2018.1502446
ICES, 2021, ICES Working Group on Baltic International Fish Survey (WGBIFS; outputs from 2020 meeting), ICES Scientific Reports, 3, 1
Køie, 1995, The life cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infections, Parasitol. Res., 81, 481, 10.1007/BF00931790
Lambert, 1997, Condition and energy reserves of Atlantic cod (Gadus morhua) during the collapse of the northern Gulf of St. Lawrence stock, Can. J. Fish. Aquat. Sci., 54, 2388, 10.1139/f97-145
Lunneryd, 2022, Mata mager torsk till en fin produkt – en räddning för kustfisket?, Aqua Reports, 5, 23
Marnis, 2019, Transcriptomic analysis of Baltic cod (Gadus morhua) liver infected with Contracaecum osculatum third stage larvae indicates parasitic effects on growth and immune response, Fish Shellfish Immunol., 93, 965, 10.1016/j.fsi.2019.08.034
Marteinsdottir, 2002, Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod Gadus morhua, Mar. Ecol. Prog. Ser., 235, 235, 10.3354/meps235235
McElroy, 2014, Host performance as a target of manupulation by parasites: a meta-analysis, J. Parasitol., 100, 399, 10.1645/13-488.1
Mehrdana, 2014, Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea, Vet. Parasitol., 205, 581, 10.1016/j.vetpar.2014.08.027
Mohamed, 2020, Contracaecum osculatum (sensu lato) infection of Gadus morhua in the Baltic Sea: inter- and intraspecific interactions, Int. J. Parasitol., 50, 891, 10.1016/j.ijpara.2020.06.003
Neuenfeldt, 2020, Feeding and growth of Atlantic cod (Gadus morhua L.) in the eastern Baltic Sea under environmental change, ICES (Int. Counc. Explor. Sea) J. Mar. Sci., 77, 624, 10.1093/icesjms/fsz224
Pedersen, 1989, Growth rates of large, sexually mature cod, Gadus morhua, in relation to condition and temperature during an annual cycle, Aquaculture, 81, 161, 10.1016/0044-8486(89)90242-1
Plambech, 2013, Excess post-hypoxic oxygen consumption in Atlantic cod Gadus morhua, J. Fish. Biol., 83, 396, 10.1111/jfb.12171
2019
Ryberg, 2021, 163
Ryberg, 2020, Physiological condition of Eastern Baltic cod, Gadus morhua, infected with the parasitic nematode Contracaecum osculatum, Conserv. Physiol., 8, 10.1093/conphys/coaa093
Setyawan, 2020, Baltic cod endohelminths reflect recent ecological changes, J. Helminthol., 94, 10.1017/S0022149X20000176
Silberberger, 2018, Food-web structure in four locations along the European shelf indicates spatial differences in ecosystem functioning, Front. Mar. Sci., 5, 10.3389/fmars.2018.00119
Sokolova, 2018, Spatial patterns in infection of cod Gadus morhua with the seal-associated liver worm Contracaecum osculatum from the Skagerrak to the central Baltic Sea, Mar. Ecol. Prog. Ser., 606, 105, 10.3354/meps12773
Svedäng, 2014, Selective fishing induces density-dependent growth, Nat. Commun., 5, 4152, 10.1038/ncomms5152
2006, 1
Timi, 2020, Why ignoring parasites in fish ecology is a mistake, Int. J. Parasitol., 50, 755, 10.1016/j.ijpara.2020.04.007
Wąsikowska, 2018, A novel method for predicting anisakid nematode infection of Atlantic cod using rough set theory, J. Food Protect., 81, 502, 10.4315/0362-028X.JFP-17-371
Wood, 2006
Wood
Zuo, 2018, Contracaecum osculatum and other anisakid nematodes in grey seals and cod in the Baltic Sea: molecular and ecological links, J. Helminthol., 92, 81, 10.1017/S0022149X17000025
Zuur, 2009