The effect of uneven and obstructed site layouts in best-of-N

Jennifer Leaf1, Julie A. Adams1
1Collaborative Robotics and Intelligent Systems (CoRIS) Institute, Oregon State University, Corvallis, USA

Tóm tắt

Biologically inspired collective decision-making algorithms show promise for implementing spatially distributed searching tasks with robotic systems. One example is the best-of-N problem in which a collective must search an environment for an unknown number of sites and select the best option. Real-world robotic deployments must achieve acceptable success rates and execution times across a wide variety of environmental conditions, a property known as resilience. Existing experiments for the best-of-N problem have not explicitly examined how the site layout affects a collective’s performance and resilience. Two novel resilience metrics are used to compare algorithmic performance and resilience between evenly distributed, obstructed, or unobstructed uneven site configurations. Obstructing the highest valued site negatively affected selection accuracy for both algorithms, while uneven site distribution had no effect on either algorithm’s resilience. The results also illuminate the distinction between absolute resilience as measured against an objective standard, and relative resilience used to compare an algorithm’s performance across different operating conditions.

Từ khóa


Tài liệu tham khảo

Allen, C. R., Gunderson, L., & Johnson, A. R. (2005). The use of discontinuities and functional groups to assess relative resilience in complex systems. Ecosystems, 8(8), 958–966. https://doi.org/10.2307/25053891 Angeler, D. G., Allen, C. R., Rojo, C., Alvarez-Cobelas, M., Rodrigo, M. A., & Sánchez-Carrillo, S. (2013). Inferring the relative resilience of alternative states. PLoS ONE, 8(10), e77338. https://doi.org/10.1371/journal.pone.0077338 Bayındır, L. (2016). A review of swarm robotics tasks. Neurocomputing, 172, 292–321. https://doi.org/10.1016/J.NEUCOM.2015.05.116 Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497 Canciani, F., Talamali, M. S., Marshall, J. A. R., Bose, T., & Reina, A. (2019). Keep calm and vote on: Swarm resiliency in collective decision making. In Proceedings of workshop resilient robot teams of the IEEE international conference on robotics and automation. Codling, E. A., Plank, M. J., & Benhamou, S. (2008). Random walk models in biology. Journal of The Royal Society Interface, 5(25), 813–834. https://doi.org/10.1098/rsif.2008.0014 Cody, J. R. (2018). Discrete Consensus Decisions in Human-Collective Teams. PhD thesis, Vanderbilt University. Cody, J. R., & Adams, J. A. (2017). An evaluation of quorum sensing mechanisms in collective value-sensitive site selection. In International symposium on multi-robot and multi-agent systems (pp. 40–47). https://doi.org/10.1109/MRS.2017.8250929 Cody, J. R., Roundtree, K. A., & Adams, J. A. (2021). Human-collective collaborative target selection. ACM Transactions on Human-Robot Interaction, 10(2), 1–29. https://doi.org/10.1145/3442679 Franks, N. R., Hardcastle, K. A., Collins, S., Smith, F. D., Sullivan, K. M., Robinson, E. J., & Sendova-Franks, A. B. (2008). Can ant colonies choose a far-and-away better nest over an in-the-way poor one? Animal Behaviour, 76(2), 323–334. https://doi.org/10.1016/j.anbehav.2008.02.009 Gordon, D. M. (2014). The ecology of collective behavior. PLoS Biology, 12(3), e1001805. https://doi.org/10.1371/journal.pbio.1001805 Gordon, D. M. (2016). The evolution of the algorithms for collective behavior. Cell Systems, 3(6), 514–520. https://doi.org/10.1016/j.cels.2016.10.013 Hamann, H., & Wörn, H. (2008). A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intelligence, 2, 209–239. https://doi.org/10.1007/s11721-008-0015-3 Henry, D., & Emmanuel Ramirez-Marquez, J. (2012). Generic metrics and quantitative approaches for system resilience as a function of time. Reliability Engineering & System Safety, 99, 114–122. https://doi.org/10.1016/J.RESS.2011.09.002 Hodgson, D., McDonald, J. L., & Hosken, D. J. (2015). What do you mean, ‘resilient’? Trends in Ecology & Evolution, 30(9), 503–506. https://doi.org/10.1016/J.TREE.2015.06.010 Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering and System Safety, 145, 47–61. https://doi.org/10.1016/j.ress.2015.08.006 Ingrisch, J., & Bahn, M. (2018). Towards a comparable quantification of resilience. Trends in Ecology & Evolution, 33(4), 251–259. https://doi.org/10.1016/J.TREE.2018.01.013 Jain, P., & Goodrich, M. A. (2022). Processes for a colony solving the best-of-N problem using a bipartite graph representation. In M. Yamamoto, F. Matsuno, & S. Azuma (Eds.), Distributed autonomous robotic (pp. 376–388). Systems, Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-92790-5_29 Janson, S., Middendorf, M., & Beekman, M. (2007). Searching for a new home—Scouting behavior of honeybee swarms. Behavioral Ecology, 18(2), 384–392. https://doi.org/10.1093/beheco/arl095 Krotkov, E., Hackett, D., Jackel, L., Perschbacher, M., Pippine, J., Strauss, J., Pratt, G., & Orlowski, C. (2017). The DARPA robotics challenge finals: Results and perspectives. Journal of Field Robotics, 34(2), 229–240. https://doi.org/10.1002/rob.21683 Laomettachit, T., Termsaithong, T., Sae-Tang, A., & Duangphakdee, O. (2015). Decision-making in honeybee swarms based on quality and distance information of candidate nest sites. Journal of Theoretical Biology, 364, 21–30. https://doi.org/10.1016/j.jtbi.2014.09.005 Leaf, J., & Adams, J. A. (2022). Measuring resilience in collective robotic algorithms. In: Proceedings of the international conference on autonomous agents and multiagent systems (pp. 1666–1668). Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots, 13, 127–141. Lu, Q., Hecker, J. P., & Moses, M. E. (2016). The MPFA: A multiple-place foraging algorithm for biologically-inspired robot swarms. In: IEEE/RSJ international conference on intelligent robots and systems (pp. 3815–3821). https://doi.org/10.1109/IROS.2016.7759561 Pais, D., Hogan, P. M., Schlegel, T., Franks, N. R., Leonard, N. E., & Marshall, J. A. (2013). A mechanism for value-sensitive decision-making. PLoS ONE, 8(9), e73216. https://doi.org/10.1371/journal.pone.0073216 Parker, C., & Zhang, Hong. (2009). Cooperative decision-making in decentralized multiple-robot systems: The best-of-N problem. IEEE/ASME Transactions on Mechatronics, 14(2), 240–251. https://doi.org/10.1109/TMECH.2009.2014370 Prasetyo, J., De Masi, G., Ranjan, P., & Ferrante, E., et al. (2018). The best-of-n problem with dynamic site qualities: Achieving adaptability with stubborn individuals. In M. Dorigo, M. Birattari, & C. Blum (Eds.), Swarm intelligence (pp. 239–251). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-00533-7_19 Prasetyo, J., De Masi, G., & Ferrante, E. (2019). Collective decision making in dynamic environments. Swarm Intelligence, 13(3–4), 217–243. https://doi.org/10.1007/s11721-019-00169-8 Prasetyo, J., De Masi. G., Tuci. E., & Ferrante, E. (2020). The effect of differential quality and differential zealotry in the best-of-n problem. In Proceedings of the genetic and evolutionary computation conference companion (pp. 65–66). https://doi.org/10.1145/3377929.3390053 Pratt, S. C., Sumpter, D. J., Mallon, E. B., & Franks, N. R. (2005). An agent-based model of collective nest choice by the ant Temnothorax albipennis. Animal Behaviour, 70(5), 1023–1036. https://doi.org/10.1016/j.anbehav.2005.01.022 Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015). A quantitative micro-macro link for collective decisions: The shortest path discovery/selection example. Swarm Intelligence, 9(2–3), 75–102. https://doi.org/10.1007/s11721-015-0105-y Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A design pattern for decentralised decision making. PLOS ONE, 10(10), e0140950. https://doi.org/10.1371/journal.pone.0140950 Reina, A., Bose, T., Trianni, V., & Marshall, J. A. (2018). Effects of spatiality on value-sensitive decisions made by robot swarms. In R. Groß, A. Kolling, & S. Berman (Eds.), Distributed autonomous robotic systems (pp. 461–473). Springer International Publishing. https://doi.org/10.1007/978-3-319-73008-0_32 Rothman, K. J., Greenland, S., & Lash, T. L. (2008). Modern epidemiology (3rd ed.). Wolters Kluwer Health. Şahin, E. (2004). Swarm robotics: From sources of inspiration to domains of application. In: International workshop on swarm robotics (pp 10–20). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-30552-1_2 Schaerf, T. M., Makinson, J. C., Myerscough, M. R., & Beekman, M. (2013). Do small swarms have an advantage when house hunting? The effect of swarm size on nest-site selection by Apis mellifera. Journal of the Royal Society Interface, 10(20130), 533. https://doi.org/10.1098/rsif.2013.0533 Seeley, T. D. (1995). The wisdom of the hive: The social physiology of honey bee colonies. Harvard University Press. Seeley, T. D. (2010). Honeybee democracy. Princeton University Press. Seeley, T. D., & Buhrman, S. C. (2001). Nest-site selection in honey bees: How well do swarms implement the “best-of-N’’ decision rule? Behavioral Ecology and Sociobiology, 49(5), 416–427. https://doi.org/10.1007/s002650000299 Seeley, T. D., Visscher, P. K., Schlegel, Thomas, et al. (2012). Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science, 335, 108–111. https://doi.org/10.1177/002204260603600304 Sumpter, D. J. T. (2010). Collective animal behavior. Princeton University Press. Talamali, M. S., Marshall, J. A., Bose, T., & Reina, A., (2019). Improving collective decision accuracy via time-varying cross-inhibition. In: International conference on robotics and automation (pp. 9652–9659). https://doi.org/10.1109/ICRA.2019.8794284 Talamali, M. S., Bose, T., Haire, M., Xu, X., Marshall, J. A., & Reina, A. (2020). Sophisticated collective foraging with minimalist agents: A swarm robotics test. Swarm Intelligence, 14(1), 25–56. https://doi.org/10.1007/s11721-019-00176-9 Valentini, G., Ferrante, E., Hamann, H., & Dorigo, M. (2016). Collective decision with 100 Kilobots: Speed versus accuracy in binary discrimination problems. Autonomous Agents and Multi-Agent Systems, 30(3), 553–580. https://doi.org/10.1007/s10458-015-9323-3 Valentini, G., Ferrante, E., & Dorigo, M. (2017). The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives. Frontiers in Robotics and AI, 4, 9. https://doi.org/10.3389/frobt.2017.00009 Valentini, G., Moore D. G., Hanson, J. R., Pavlic, T. P., Pratt, S. C., & Walker, S. I. (2020). Transfer of information in collective decisions by artificial agents. In Conference on Artificial Life (pp. 641–648). https://doi.org/10.1162/isal_a_00117 Van Riemsdijk, M. B., Dastani, M., & Winikoff, M. (2008). Goals in agent systems: a unifying framework. In Proceedings of the international joint conference on autonomous agents and multiagent systems (pp 702–709) Woods, D. D., & Branlat. M. (2011). Basic patterns in how adaptive systems fail. In Resilience engineering in practice (pp. 127–144). Farnham, UK, Ashgate. https://doi.org/10.1201/9781317065265-10 Yang, G. Z., Bellingham, J., Dupont, P. E., Fischer, P., Floridi, L., Full, R., Jacobstein, N., Kumar, V., McNutt, M., Merrifield, R., & Nelson, B. J. (2018). The grand challenges of Science Robotics. Science Robotics. https://doi.org/10.1126/scirobotics.aar7650 Zobel, C. W. (2010). Representing perceived tradeoffs in defining disaster resilience. Decision Support Systems, 50, 394–403. https://doi.org/10.1016/j.dss.2010.10.001