The effect of the domain topology on the number of positive solutions for an elliptic system

Giovany M. Figueiredo1, Leticia S. Silva1
1Departamento de Matemática, Universidade de Brasília, Brasília, Brazil

Tóm tắt

In this paper we prove an existence result of multiple positive solutions for the following system $$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u= \frac{2 \alpha _\epsilon }{\alpha _\epsilon +\beta _\epsilon }|u|^{\alpha _\epsilon -2}u |v|^{\beta _\epsilon }&{} \text{ in } \Omega , \\ -\Delta v= \frac{2 \beta _\epsilon }{\alpha _\epsilon +\beta _\epsilon }|u|^{\alpha _\epsilon } |v|^{\beta _\epsilon -2 }v&{} \text{ in } \Omega , \\ u= v =0 &{} \text{ on } \partial \Omega , \end{array} \right. \end{aligned}$$ where $$\Omega $$ is a smooth and bounded domain in $${\mathbb {R}}^{N}$$ , $$N\ge 3$$ , $$\alpha _\epsilon = \alpha - \frac{\epsilon }{2}$$ , $$\beta _\epsilon =\beta - \frac{\epsilon }{2}$$ , $$\alpha , \beta >1$$ and $$\alpha +\beta = 2^*$$ , where $$2^{*}=\frac{2N}{N-2}$$ . More specifically, we prove that, for $$\epsilon >0$$ small, the number of positive solutions is estimated below by topological invariants of the domain $$\Omega $$ : the Ljusternick–Schnirelmann category.

Tài liệu tham khảo

Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2, 29–48 (1994) Benci, V., Cerami, G.: The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch. Rational Mech. Anal. 114, 79–93 (1991) Benci, V., Cerami, G., Passaseo, D.: On the number of positive solutions of some nonlinear elliptic problems. Nonlinear Anal. Sc. Norm. Super. di Pisa Quaderni Scuola Norm. Sup. Pisa 93–107 (1991) de Morais Filho, D.C., Souto, M.A.S.: Systems of p-Laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees. Commun. Partial Diff. Equ. 24, 1537–1553 (1999) Figueiredo, G.M., Siciliano, G.: Positive solutions for the fractional Laplacian in the almost critical case in a bounded domain. Nonlinear Anal. Real World Appl. 36, 89–100 (2017) Figueiredo, G.M., Severo, U.B., Siciliano, G.: Multiplicity of positive solutions for a quasilinear Schrödinger equation with an almost critical nonlinearity. Adv. Nonlinear Stud. 20(4), 933–963 (2020) Figueiredo, G.M., Silva, L.S.: Existence of positive solutions of a critical system in \({\mathbb{R}}^{N}\). Palestine J. Math. 10(2), 502–532 (2021) Han, P.: The effect of the domain topology on the number of positive solutions of an elliptic system involving critical Sobolev exponents. Houston J. Math. 32(4), 1241–1257 (2006) Ishiwata, M.: Effect of topology on the multiplicity of solutions for some semilinear elliptic systems with critical Sobolev exponent. NoDEA Nonlinear Differ. Equ. Appl. 16(3), 283–296 (2009) Kou, B., An, T., Wang, Z.: The Pohozaev-type inequalities and their applications for a kind of elliptic equation (system). Bound. Value Probl. 103 (2017) Pohozaev, S.I.: Eigenfunctions of the equations \(\Delta u+\lambda f(u)=0\). Soviet Math. Dokl. 5, 1408–1411 (1965) Siciliano, G.: Multiple positive solutions for a Schrödinger–Poisson–Slater system. J. Math. Anal. Appl. 365(1), 288–299 (2010)