The effect of salinity on Fucus ceranoides (Ochrophyta, Phaeophyceae) in the Mondego River (Portugal)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bäck S, Collins J C, Russell G. 1992. Recruitment of the Baltic flora: the Fucus ceranoides enigma. Botanica Marina, 35(1): 53–59.
Barahona T, Chandia N P, Encinas M V, Matsuhiro B, Zúñiga, EA. 2011. Antioxidant capacity of sulfated polysaccharides from seaweeds: a kinetic approach. Food Hydrocolloids, 25: 529–535.
Beauchamp E. 2012. Effects of UV radiation and salinity on the intertidal macroalgae Palmaria palmata and Ulva lactuca; effects on photosynthetic performance, growth and pigments. The Plymouth Student Scientist, 5(1): 3–22.
Blois M S. 1958. Antioxidant determinations by the use of a stable free radical. Nature, 26(4617): 1 199–2 000.
Brawley S H, Johnson L E. 1992. Gametogenesis, gametes and zygotes: an ecological perspective on sexual reproduction in the algae. British Phycological Journal, 27(3): 233–252.
Cumashi A, Ushakova N A, Preobrazhenskaya M E, D–Incecco A, Piccoli A, Totani L, Ninari N, Morozevich G E, Berman A E, Bilan M I, Usov A I, Ustyuzhanina N E, Grachev A A, Sanderson C J, Kelly M, Rabinovich G A, Iacobelli S, Nifantiev N E. 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17(5): 541–552.
de Carvalho L G. 2013. Avaliação do Potencial Biotecnológico de Micro E Macroalgas da Flora Portuguesa. University of Coimbra, Coimbra, Portugal. (in Portuguese)
Fitton J H, Stringer D N, Karpiniec S S. 2015. Therapies from fucoidan: an update. Marine Drugs, 13(9): 5 920–5 946.
Imbs T I, Ermakova S P, Fedoreyev S A, Anastyuk S D, Zvyagintseva T N. 2013. Isolation of fucoxanthin and highly unsaturated monogalactosyldiacylglycerol from brown alga Fucus evanescens C Agardh and in vitro investigation of their antitumor activity. Marine Biotechnology, 15(5): 606–612.
Jeffrey S W, Humphrey G F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2): 191–194.
Jeffrey S W. 1972. Preparation and some properties of crystalline chlorophyll c 1 and c 2 from marine algae. Biochimica et Biophysica Acta (BBA) - General Subjects, 279(1): 15–33.
Khfaji A K, Norton T A. 1979. The effects of salinity on the distribution of Fucus ceranoides. Estuarine and Coastal Marine Science, 8(5): 433–439.
Koivikko R, Loponen J, Honkanen T, Jormalainen V. 2005. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. Journal of Chemical Ecology, 31(1): 195–212.
Koivikko R. 2008. Brown Algal Phlorotannins - Improving and Applying Chemical Methods. University of Turku, Turku, Finland. 61p.
Mikami K, Hosokawa M. 2013. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 14(7): 13 763–13 781.
Peng J, Yuan J P, Wu C F, Wang J H. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs, 9(10): 1 806–1 828.
Pereira L, Gheda S F, Ribeiro-Claro P J A. 2013. Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. International Journal of Carbohydrate Chemistry, 2013: Article ID 537202.
Pereira L, Ribeiro-Claro P J A. 2015. Analysis by vibrational spectroscopy of seaweed with potential use in food, pharmaceutical and cosmetic industries. In: Pereira L, Patricio J, Neto J M eds. Marine Algae - Biodiversity, Taxonomy, Environmental Assessment, and Biotechnology. Science Publishers, an Imprint of CRC Press/ Taylor & Francis Group, Boca Raton, FL.
Pielesz A, Machnicka A, Sarna E. 2011. Antibacterial activity and scanning electron microscopy (SEM) examination of alginate-based films and wound dressings. Ecological Chemistry and Engineering. S, 18(2): 197–210.
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10): 1 231–1 237.
Rodriguez-Jasso R M, Mussatto S I, Pastrana L, Aguilar C N, Teixeira J A. 2014. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chemical Papers, 68(2): 203–209.
Rupérez P, Ahrazem O, Leal A J. 2002. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. Journal of Agricultural and Food Chemistry, 50(4): 840–845.
Serrão E A, Brawley S H, Hedman J, Kautsky L, Samuelsson G. 1999. Reproductive success of Fucus vesiculosus (Phaeophyceae) in the Baltic Sea. Journal of Phycology, 35(2): 254–269.
Singh I P, Bharate S B. 2006. Phloroglucinol compounds of natural origin. Natural Product Reports, 23(4): 558–591.
Stengel D B, Connan S, Popper Z A. 2001. Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnology Advances, 29(5): 483–501.
Tierney M S, Soler-vila A, Croft A K, Hayes M. 2013. Antioxidant activity of the brown macroalgae Fucus spiralis Linnaeus harvested from the West coast of Ireland. Current Research Journal of Biological Sciences, 5(3): 81–90.
Wright S W, Jeffrey S W. 1987. Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC. Marine Ecology Progress Series, 38: 259–266.
Xia S, Wang K, Wan L L, Li A F, Hu Q, Zhang C W. 2013. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine Drugs, 11(7): 2 667–2 681.
Yip W H, Lim S J, Mustapha W A W, Maskat M Y, Said M. 2014. Characterisation and stability of pigments extracted from Sargassum binderi obtained from Semporna, Sabah. Sains Malaysiana, 43(9): 1 345–1 354.