Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tác động của axit salicylic và axit jasmonic đến hoạt động và phạm vi của các protein bảo vệ trong quá trình nhiễm bệnh của lúa mì bởi mầm bệnh gây bệnh septoriosis
Tóm tắt
Sự ảnh hưởng của axit salicylic (SA) và axit jasmonic (JA) như là các chất trung gian trong hệ thống tín hiệu đối với sự sinh H2O2 và sự biểu hiện của các gen mã hóa protein bảo vệ đã được nghiên cứu trên lá của lúa mì Triticum aestivum L. khi bị nhiễm mầm bệnh gây bệnh septoriosis Septoria nodorum Berk. Kết quả cho thấy việc xử lý hạt trước khi gieo với SA và JA đã làm giảm sự phát triển của nấm trên lá lúa mì và có tác dụng kích thích đến sự sản xuất H2O2 tại vùng nhiễm bệnh. Sự biểu hiện tăng lên của các gen mã hóa enzyme oxalate oxidase AJ556991.1 và peroxidase anion TC 151917 đã được chỉ ra trong các mô bị nhiễm bằng phương pháp phản ứng chuỗi polymerase.
Từ khóa
#axit salicylic #axit jasmonic #H2O2 #protein bảo vệ #lúa mì #nhiễm septoriosisTài liệu tham khảo
Alvarez, M.E., Salicylic acid in the machinery of hypersensitive cell death and disease resistance, Plant. Mol. Biol., 2000, vol. 44, pp. 429–442.
Andreeva, V.A., Ferment peroksidaza: Uchastie v zashchitnom mekhanizme rastenii (ot virusnoi infektsii) (Enzyme Peroxidase: Participation in the Defense Mechanism of Plants (against Viral Infections)), Moscow: Nauka, 1988.
Bestwick, C.S., Brown, I.R., Bennett, M.H.R., and Mansfield, J.W., Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. phaseolicola, Plant Cell, 1997, vol. 9, pp. 209–221.
Caliskan, M. and Cuming, A.C., Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination, Plant J., 1998, vol. 15, pp. 165–171.
Dumas, B., Freyssinet, G., and Pallet, R.E., Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings, Plant Physiol., 1995, vol. 107, pp. 1091–1094.
Durrant, W.E. and Dong, X., Systemic acquired resistance, Annu. Rev. Phytopathol., 2004, vol. 42, pp. 185–209.
Galvez-Valdivieso, G. and Mullineaux, P.M., The role of reactive oxygen species in signalling from chloroplasts to the nucleus, Physiol. Plant., 2010, vol. 138, pp. 430–439.
Glazebrook, J., Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens, Annu. Rev. Phytopathol., 2005, vol. 43, pp. 205–227.
Huckelboven, R. and Kogel, K.-H., Reactive oxygen inter-mediates in plant-microbe interactions: who is who in powdery mildew resistance?, Planta, 2003, vol. 216, no. 6, pp. 891–902.
Jaspers, P. and Kangasjärvi, J., Reactive oxygen species in abiotic stress signaling, Physiol. Plant., 2010, vol. 138, pp. 405–413.
Koornneef, A., Leott-Reyes, A., Ristema, T., et al., Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation, Plant Physiol., 2008, vol. 147, pp. 1358–1368.
Ladyzhenskaya, I.P. and Korableva, N.P., Effect of jasmonic acid on Ca+2 transport through the plasmalemma of potato tuber cells, Appl. Biochem. Microbiol., 2008, vol. 44, no. 6, pp. 642–646.
Liu, Yu., Pan, Ts.Kh., Yan, Kh.R., et al., Relationship between H2O2 and jasmonic acid in pea leaf wounding response, Russ. J. Plant Physiol., 2008, vol. 55, no. 6, pp. 765–775.
Loake, C. and Grant, M., Salicylic acid in plant defense—the players and protagonists, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 466–472.
Morozov, Yu.M., Cytological aspects of the relationships between plants and phytopathogenic fungi, Mikol. Fitopatol., 1992, vol. 26, no. 1, pp. 67–75.
Mur, L.A.J., Kenton, P., Atzorn, R., et al., The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism and oxidative stress leading to cell death, Plant Physiol., 2006, vol. 140, pp. 249–262.
Parbery, D.G., Trophism and the ecology of fungi associated with plants, Biol. Rev., 1996, vol. 71, pp. 473–527.
Peña-Cortés, H., Albrecht, T., Prat, S., et al., Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis, Planta, 1993, vol. 191, pp. 123–128.
Plotnikova, L.Ya., The involvement of reactive oxygen species in defense of wheat lines with the genes introgressed from Agropyron species contributing the resistance against brown rust, Russ. J. Plant Physiol., 2009, vol. 56, no. 2, pp. 181–189.
Pyzhikova, G.V., Septoriozy zernovykh kul’tur (Septorioses of Crops), Moscow: Kolos, 1984.
Pyzhikova, G.V. and Karaseva, E.V., Method for studying septoriosis causative agents on isolated wheat leaves, S.-Kh. Biol., 1986, no. 12, pp. 112–114.
Stout, M.J., Fidantsef, A.L., Duffey, S.S., and Bostock, R.M., Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum, Physiol. Mol. Plant Pathol., 1999, vol. 54, pp. 115–130.
Straus, M.R., Rietz, S., Themaat, E.V.L., et al., Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis, Plant J., 2010, vol. 62, pp. 628–640.
Takahashi, H., Wilkinson, G.R., Padrini, R., and Echizen, H., CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences, Clin. Pharmacol. Ther., 2004, vol. 75, pp. 376–380.
Tarchevsky, I.A., Metabolizm rastenii pri stresse (Plant Metabolism in Stress), Kazan: Fen, 2001.
Tarchevsky, I.A., Yakovleva, V.G., and Egorova, A.M., Proteomic analysis of salicylate-induced proteins of pea (Pisum sativum L.) leaves, Biochemistry (Moscow), 2010, vol. 75, no. 5, pp. 590–597.
Troshina, N.B., Maksimov, I.V., Yarullina, L.G., et al., Plant resistance inductors and active forms of oxygen. II. The influence of chitooligosaccharides on the production of hydrogen peroxide with the involvement of oxalate oxidase in common cultures of wheat calluses and bunt pathogen, Tsitologiya, 2004, no. 11, pp. 1006–1010.
Vasyukova, N.I., Chalenko, G.I., Gerasimova, N.G., et al., Activation of elicitor defensive properties by systemic signal molecules during the interaction between potato and the late blight agent, Appl. Biochem. Microbiol., 2008, vol. 44, no. 2, pp. 213–217.
Vincent, J.L., Snyder, A.Z., Fox, M.D., et al., Coherent spontaneous activity identifies a hippocampal-parietal memory network, J. Neurophys., 2006, vol. 96, pp. 3517–3531.
Vlot, A.C., Dempsey, M.A., and Klessig, D.F., Salicylic acid, a multifaceted hormone to combat disease, Annu. Rev. Phytopathol., 2009, vol. 47, pp. 177–206.
Volynets, A.P. and Afanas’eva, N.V., Abscisic acid as a pathogenesis inducer, Vestn. Akad. Nauk BSSR, Ser. Biol., 1990, no. 1, pp. 28–30.
Wang, L.-J. and Li, S.-H., Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants, Plant Sci., 2006, vol. 170, pp. 685–694.
Yarullina, L.G., Troshina, N.B., Maksimov, I.V., and Khairullin, R.M., Oxalate involvement in nonspecific protective activation of orthophenylenediamine oxidation in wheat seedlings in stress, Agrokhimiya, 2003, no. 12, pp. 55–59.