The effect of patellar facet angle on patellofemoral alignment and arthritis progression in posterior-stabilized total knee arthroplasty without patellar resurfacing
Tóm tắt
The purpose of this study was to evaluate the effect of patellar facet angle on pre- and postoperative patellofemoral alignment and the progress of arthritis of the patellofemoral joint in posterior-stabilized total knee arthroplasty (PS TKA) without patellar resurfacing.
Patients who had a PS TKA for a varus osteoarthritic knee who were followed up for more than 2 years were included in this study. The radiologic and clinical outcomes were compared between 72 knees (group A) whose patellar facet angle was greater than 126° (> 126°) and 32 knees (group B) whose patellar facet angle was smaller than or equal to 126° (≤ 126°). For the radiologic assessment, the Kellgren-Lawrence grade, mechanical femorotibial angle, Insall-Salvati ratio, patellar tilt angle, patellar displacement and the osteosclerosis of the patellar ridge were evaluated. The range of motion (ROM) and patient-reported outcomes (the Knee Society knee score, the Knee Society function score, the Feller patellar score, and the Kujala patellofemoral score) were used for the clinical assessment.
The preoperative patellar tilt angle was 9.8° (standard deviation [SD] 5.5) and 14.6° (SD 4.1) in group A and group B, respectively, a significant difference (
Although a narrow patellar facet angle was related to an increase of lateral tilting of the patella, it showed no impact on the preoperative clinical assessment. The radiologic and clinical outcomes evaluated after the PS TKA showed no statistical difference according to the patellar shape. Although the patellar shape evaluated by the patellar facet angle can partially affect the preoperative patellofemoral alignment, this study result indicated insignificant clinical relevance of the patellar shape in the PS TKA.
Từ khóa
Tài liệu tham khảo
Assiotis A, To K, Morgan-Jones R, Pengas IP, Khan W (2019) Patellar complications following total knee arthroplasty: a review of the current literature. Eur J Orthop Surg Traumatol 29(8):1605–1615
Breugem SJ, Haverkamp D (2014) Anterior knee pain after a total knee arthroplasty: what can cause this pain? World J Orthop 5(3):163–170
Longo UG, Ciuffreda M, Mannering N, D'Andrea V, Cimmino M, Denaro V (2018) Patellar resurfacing in total knee arthroplasty: systematic review and meta-analysis. J Arthroplast 33(2):620–632
Conrad DN, Dennis DA (2014) Patellofemoral crepitus after total knee arthroplasty: etiology and preventive measures. Clin Orthop Surg 6(1):9–19
Putman S, Boureau F, Girard J, Migaud H, Pasquier G (2019) Patellar complications after total knee arthroplasty. Orthop Traumatol Surg Res 105(1S):S43–S51
Petersen W, Rembitzki IV, Bruggemann GP, Ellermann A, Best R, Koppenburg AG, Liebau C (2014) Anterior knee pain after total knee arthroplasty: a narrative review. Int Orthop 38(2):319–328
Russell RD, Huo MH, Jones RE (2014) Avoiding patellar complications in total knee replacement. Bone Joint J 96-B(11 Supple A):84–86
Parvizi J, Mortazavi SM, Devulapalli C, Hozack WJ, Sharkey PF, Rothman RH (2012) Secondary resurfacing of the patella after primary total knee arthroplasty does the anterior knee pain resolve? J Arthroplast 27(1):21–26
Inoue A, Arai Y, Nakagawa S, Inoue H, Yoshihara Y, Yamazoe S, Kubo T (2017) Differences in patellofemoral alignment as a result of patellar shape in cruciate-retaining total knee arthroplasty without patellar resurfacing at a minimum three-year follow-up. Knee 24(6):1448–1453
Panni AS, Cerciello S, Maffulli N, Di Cesare M, Servien E, Neyret P (2011) Patellar shape can be a predisposing factor in patellar instability. Knee Surg Sports Traumatol Arthrosc 19(4):663–670
Broberg JS, Ndoja S, MacDonald SJ, Lanting BA, Teeter MG (2020) Comparison of contact kinematics in posterior-stabilized and cruciate-retaining total knee arthroplasty at long-term follow-up. J Arthroplast 35(1):272–277
Wunschel M, Leasure JM, Dalheimer P, Kraft N, Wulker N, Muller O (2013) Differences in knee joint kinematics and forces after posterior cruciate retaining and stabilized total knee arthroplasty. Knee 20(6):416–421
Favorito PJ, Mihalko WM, Krackow KA (2002) Total knee arthroplasty in the valgus knee. J Am Acad Orthop Surg 10(1):16–24
Rossi R, Rosso F, Cottino U, Dettoni F, Bonasia DE, Bruzzone M (2014) Total knee arthroplasty in the valgus knee. Int Orthop 38(2):273–283
Sherman SL, Thompson SF, Clohisy JCF (2018) Distal femoral varus osteotomy for the management of valgus deformity of the knee. J Am Acad Orthop Surg 26(9):313–324
Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502
Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470(1):45–53
Verhulst FV, van Sambeeck JDP, Olthuis GS, van der Ree J, Koeter S (2019) Patellar height measurements: Insall-Salvati ratio is most reliable method. Knee Surg Sports Traumatol Arthrosc 28:869–875
Chia SL, Merican AM, Devadasan B, Strachan RK, Amis AA (2009) Radiographic features predictive of patellar maltracking during total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 17(10):1217–1224
Kong CG, Cho HM, Suhl KH, Kim MU, In Y (2012) Patellar tracking after total knee arthroplasty performed without lateral release. Knee 19(5):692–695
Kim CW, Lee CR, Seo SS, Gwak HC, Kim JH, Park JH (2017) Clinical and radiologic outcomes of partial lateral patellar facetectomy in total knee arthroplasty. J Knee Surg 30(2):185–192
Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–4
Feller JA, Bartlett RJ, Lang DM (1996) Patellar resurfacing versus retention in total knee arthroplasty. J Bone Joint Surg (Br) 78(2):226–228
Kujala UM, Jaakkola LH, Koskinen SK, Taimela S, Hurme M, Nelimarkka O (1993) Scoring of patellofemoral disorders. Arthroscopy 9(2):159–163
Senioris A, Saffarini M, Rahali S, Malekpour L, Dujardin F, Courage O (2016) Does patellofemoral congruence following total knee arthroplasty correlate with pain or function? Intraoperative arthroscopic assessment of 30 cases. Ann Transl Med 4(15):279
Ait-Si-Selmi T, Marie-Hardy L, O'Loughlin PF, Kobayashi K, Muller JH, Saffarini M, Bonnin MP (2020) Patellar facet ratio affects knee pain, stair climbing and stair descent after TKA without patellar resurfacing. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-05868-y
Migliorini F, Eschweiler J, Tingart M, Rath B (2019) Posterior-stabilized versus cruciate-retained implants for total knee arthroplasty: a meta-analysis of clinical trials. Eur J Orthop Surg Traumatol 29(4):937–946
Serna-Berna R, Lizaur-Utrilla A, Vizcaya-Moreno MF, Miralles Munoz FA, Gonzalez-Navarro B, Lopez-Prats FA (2018) Cruciate-retaining vs posterior-stabilized primary total arthroplasty. clinical outcome comparison with a minimum follow-up of 10 years. J Arthroplast 33(8):2491–2495
Vertullo CJ, Lewis PL, Lorimer M, Graves SE (2017) The effect on long-term survivorship of surgeon preference for posterior-stabilized or minimally stabilized total knee replacement: an analysis of 63,416 prostheses from the australian orthopaedic association national joint replacement registry. J Bone Joint Surg Am 99(13):1129–1139
Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (2001) The influence of femoral rollback on patellofemoral contact loads in total knee arthroplasty. J Arthroplast 16(7):909–918
Choi WC, Ryu KJ, Lee S, Seong SC, Lee MC (2013) Painful patellar clunk or crepitation of contemporary knee prostheses. Clin Orthop Relat Res 471(5):1512–1522
Frye BM, Floyd MW, Pham DC, Feldman JJ, Hamlin BR (2012) Effect of femoral component design on patellofemoral crepitance and patella clunk syndrome after posterior-stabilized total knee arthroplasty. J Arthroplast 27(6):1166–1170