Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của ozone đối với sự phân hủy sinh học của 17α-ethinylestradiol và sulfamethoxazole bởi các quần thể vi khuẩn hỗn hợp
Tóm tắt
Sự phát triển tiềm năng của kháng kháng sinh và sự rối loạn nội tiết đã dẫn đến việc nghiên cứu ngày càng nhiều về việc loại bỏ các chất ô nhiễm từ nước thải (WW) như sulfamethoxazole (SMX) và 17α-ethinylestradiol (EE2). Các hợp chất này phản ứng nhanh với ozone (O3), do đó, quá trình ozonation trong điều trị nước thải có thể dẫn đến việc loại bỏ hoàn toàn chúng. Hơn nữa, O3 đã chứng minh khả năng tăng cường khả năng phân hủy sinh học của nước thải và một số dược phẩm nhất định, cho thấy tiềm năng của nó như một bước tiền xử lý cho bùn hoạt tính (AS, điều trị sinh học). Mục tiêu của nghiên cứu này là xác định xem ozonation, được thực hiện với liều thấp hơn so với mức thường áp dụng cho nước thải đã xử lý, có dẫn đến sự tăng cường khả năng phân hủy sinh học của SMX và EE2 hay không. Kết quả cho thấy sau khi tiến hành ozonation trên quy mô phòng thí nghiệm, các hỗn hợp vi khuẩn đã loại bỏ từ 5% đến 40% SMX nhiều hơn; tuy nhiên, việc loại bỏ EE2 lại giảm từ 2% đến 23%, điều này được cho là do sự phân hủy ưu tiên một sản phẩm phụ của quá trình ozonation EE2. Những kết quả này cho thấy mặc dù ozonation, được sử dụng như một bước tiền xử lý, đã được chứng minh trong tài liệu là làm tăng khả năng phân hủy sinh học tổng thể của AS cũng như một số hợp chất kháng sinh cụ thể và một loại thuốc điều chỉnh lipid máu, nhưng khả năng tăng cường loại bỏ dược phẩm dường như phụ thuộc vào từng hợp chất và chưa thể tổng quát cho toàn bộ lớp hợp chất này.
Từ khóa
#ozonation #sulfamethoxazole #17α-ethinylestradiol #phân hủy sinh học #nước thảiTài liệu tham khảo
Alaton IA, Dogruel S, Baykal E, Gerone G (2004) Combined chemical and biological oxidation of penicillin formulation effluent. J Environ Manage 73(2):155–163
Alexy R, Kumpel T, Kummerer K (2004) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57(6):505–512
Alvares ABC, Diaper C, Parsons SA (2001) Partial oxidation by ozone to remove recalcitrance from wastewaters—a review. Environ Technol 22(4):409–427
Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6(5):452–456
Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15(4):449–456
Balcioglu IA, Otker M (2003) Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere 50(1):85–95
Beltrán FJ, García-Araya JF, Álvarez PM (1999) Integration of continuous biological and chemical (ozone) treatment of domestic wastewater: 2. Ozonation followed by biological oxidation. J Chem Technol Biotechnol 74(9):884–890
BRENDA The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4. Accessed 27 Feb 2011
Cavallucci S (2007) Top 200: What's topping the charts in prescription drugs this year? Pharmacy practice, Canadian Healthcare Network (http://www.imshealthcanada.com/vgn/images/portal/cit_40000873/13/31/8286270612-TOP200-07-final.pdf)
Dantas RF, Canterino M, Marotta R, Sans C, Esplugas S, Andreozzi R (2007) Bezafibrate removal by means of ozonation: primary intermediates, kinetics, and toxicity assessment. Water Res 41(12):2525–2532
Dantas RF, Contreras S, Sans C, Esplugas S (2008) Sulfamethoxazole abatement by means of ozonation. J Hazard Mater 150:790–794
Deborde M, Rabouan S, Duguet JP, Legube B (2005) Kinetics of aqueous ozone-induced oxidation of some endocrine disruptors. Environ Sci Technol 39(16):6086–6092
Dodd MC, Kohler H-PE, von Gunten U (2009) Oxidation of antibacterial compounds by ozone and hydroxyl radical: elimination of biological activity during aqueous ozonation processes. Environ Sci Technol 43(7):2498–2504
Drillia P, Dokianakis SN, Fountoulakis MS, Kornaros M, Stamatelatou K, Lyberatos G (2005) On the occasional biodegradation of pharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole. J Hazard Mater 122(3):259–265
Gaulke LS, Strand SE, Kalhorn TF, Stensel HD (2008) 17α-Ethinylestradiol transformation via abiotic nitration in the presence of ammonia oxidizing bacteria. Environ Sci Technol 42(20):7622–7627
Gauthier H, Yargeau V, Cooper DG (2010) Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci Total Environ 408(7):1701–1706. doi:10.1016/j.scitotenv.2009.12.012
Hashimoto T, Murakami T (2009) Removal and degradation characteristics of natural and synthetic estrogens by activated sludge in batch experiments. Water Res 43(3):573–582
Huber MM, Canonica S, Park G-Y, Von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37(5):1016–1024
Huber MM, Gobel A, Joss A, Hermann N, Loffler D, McArdell CS, Ried A, Siegrist H, Ternes TA, vonGunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39(11):4290–4299
Jobling S, Williams R, Johnson A, Taylor A, Gross-Sorokin M, Nolan M, Tyler CR, van Aerle R, Santos E, Brighty G (2006) Predicted exposures to steroid estrogens in UK rivers correlate with widespread sexual disruption in wild fish populations. Environ Health Perspect 114(Suppl 1):32–39
Johnson AC, Williams RJ (2004) A model to estimate influent and effluent concentrations of estradiol, estrone, and ethinylestradiol at sewage treatment works. Environ Sci Technol 38(13):3649–3658
Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39(14):3139–3152
Joss A, Zabczynski S, Gobel A, Hoffmann B, Loffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40(8):1686–1696
Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211
Kümmerer K (2009a) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434
Kümmerer K (2009b) Antibiotics in the aquatic environment—a review—part II. Chemosphere 75(4):435–441
Larcher S, Yargeau V (2011) Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl Microbiol Biotechnol 91(1):211–218
Larcher S, Delbes G, Robaire B, Yargeau V (2012) Degradation of 17α-ethinylestradiol by ozonation—identification of the by-products and assessment of their estrogenicity and toxicity. Environ Int 39:66–72
Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16(3):282–290
Loonen H, Lindgren F, Hansen B, Karcher W, Niemela J, Hiromatsu K, Takatsuki M, Peijnenburg W, Rorije E, Struij J (1999) Prediction of biodegradability from chemical structure: modeling of ready biodegradation test data. Environ Toxicol Chem 18(8):1763–1768
Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35(1):162–177
Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants—conception of a database and first results. Environ Pollut 157(5):1721–1726
Muller M, Patureau D, Godon JJ, Delgenes JP, Hernandez-Raquet G (2010) Molecular and kinetic characterization of mixed cultures degrading natural and synthetic estrogens. Appl Microbiol Biotechnol 85(3):691–701
O'Grady D, Evangelista S, Yargeau V (2009) Removal of aqueous 17a-ethinylestradiol by Rhodococcus species. Environ Eng Sci 26(9):1393–1400
Perez S, Eichhorn P, Aga DS (2005) Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem 24(6):1361–1367
Radke M, Lauwigi C, Heinkele G, Murdter TE, Letzel M (2009) Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test. Environ Sci Technol 43(9):3135–3141
Rani A, Porwal S, Sharma R, Kapley A, Purohit HJ, Kalia VC (2008) Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches. Bioresour Technol 99(15):7098–7107
Reinthaler FF, Posch J, Feierl G, Wust G, Haas D, Ruckenbauer G, Mascher F, Marth E (2003) Antibiotic resistance of E. coli in sewage and sludge. Water Res 37(8):1685–1690
Ren YX, Nakano K, Nomura M, Chiba N, Nishimura O (2007) Effects of bacterial activity on estrogen removal in nitrifying activated sludge. Water Res 41(14):3089–3096
Rodayan A, Roy R, Yargeau V (2010) Oxidation products of sulfamethoxazole in ozonated secondary effluent. J Hazard Mater 177:237–243
Seviour R, Kragelund C, Kong Y, Eales K, Nielsen J, Nielsen P (2008) Ecophysiology of the Actinobacteria in activated sludge systems. Antonie Van Leeuwenhoek 94(1):21–33
Shi J, Fujisawa S, Nakai S, Hosomi M (2004) Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Res 38(9):2323–2330
Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260
Ternes TA, Stuber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37(8):1976–1982
Ternes T, Janex-Habibi M-L, Knacker T, Kreuzinger N, Siegrist H (2006) Assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water facilities to improve the indirect potable water reuse (POSEIDON Final Report-EU Research Programme, http://poseidon.bafg.de/servlet/is/2888/)
Vader JS, van Ginkel CG, Sperling FMGM, de Jong J, de Boer W, de Graaf JS, van der Most M, Stokman PGW (2000) Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere 41(8):1239–1243
Vajda AM, Barber LB, Gray JL, Lopez EM, Woodling JD, Norris DO (2008) Reproductive disruption in fish downstream from an estrogenic wastewater effluent. Environ Sci Technol 42(9):3407–3414. doi:10.1021/es0720661
Volkmann H, Schwartz T, Bischoff P, Kirchen S, Obst U (2004) Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J Microbiol Methods 56(2):277–286
von Gunten U (2003) Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res 37(7):1443–1467
Weber S, Leuschner P, Kämpfer P, Dott W, Hollender J (2005) Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Appl Microbiol Biotechnol 67(1):106–112
Wert EC, Rosario-Ortiz FL, Snyder SA (2009) Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater. Water Res 43(4):1005–1014
Yao CCD, Haag WR (1991) Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res 25(7):761–773
Yargeau V, Huot JC, Rodayan A, Rouleau L, Roy R, Leask RL (2008) Impact of degradation products of sulfamethoxazole on mammalian cultured cells. Environ Toxicol 23(4):7
Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H, Makino T, Kimura K, Saino H, Sawada H, Omura H (2004) Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 70(9):5283–5289
Zhang H, Yamada H, Tsuno H (2008) Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control. Environ Sci Technol 42(9):3375–3380
