The effect of metal-doped TiO2 nanoparticles on zebrafish embryogenesis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lee, S. Y., & Park, S. J. TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19:1761–1769 (2013).
Weir, A. A. Titanium dioxide nanomaterials: Human exposure and environmental release. In Proquest, Umi Dissertation Publishing, Academic press: Arizona State University, AZ, USA (2011).
Menard, A., Drobne, D., & Jemec, A. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684 (2011).
Bianchi, C. L. et al. Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Appl Catal B-Environ 146:123–130 (2014).
Cheng, X., Liu, H., Chen, Q., Li, J., & Wang, P. Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode. Electrochim Acta 108:203–210 (2013).
Sato, T., Koizumi, Y., & Taya, M. Photocatalytic deactivation of airborne microbial cells on TiO2-loaded plate. Biochem Eng J 14:149–152 (2003).
He, F., Li, J., Li, T., & Li, G. Solvothermal synthesis of mesoporous TiO2: The effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene. Chem Eng J 237:312–321 (2014).
Yao, K. S. et al. Comparison of photocatalytic activities of various dye-modified TiO2 thin films under visible light. Surf Coat Technol 203:922–924 (2008).
van der Meulen, T., Mattson, A. & Österlund, L. A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anataserutile TiO2 nanoparticles: Role of surface intermediates. J Catal 251:131–144 (2007).
Ni, M., Leung, M. K. H., Leung, D. Y. C., & Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425 (2007).
Chen, X., Shen, S., Guo, L., & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570 (2010).
Seery, M. K., George, R., Floris, P., & Pillai, S. C. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol A-Chem 189:258–263 (2007).
Yang, Y. Z., Chang, C. H., & Idriss, H. Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M=Pd, Pt or Rh). Appl Catal B-Environ 67:217–222 (2006).
Kwak, B. S., Chae, J., Kim, J., & Kang, M. Enhanced hydrogen production from methanol/water photo-splitting in TiO2 including Pd component. Bull Korean Chem Soc 30:1047–1053 (2009).
Chae, J., Lee, J., Jeong, J. H., & Kang, M. Hydrogen production from photo splitting of water using the Gaincorporated TiO2s prepared by a solvothermal method and their characteristics. Bull Korean Chem Soc 30:302–308 (2009).
Lee, G., Yeo, M. K., Um, M. H., & Kang, M. High-efficiently photoelectrochemical hydrogen production over Zn-incorporated TiO2 nanotubes. Int J Photoenergy 2012:1–10 (2012).
Yeo, M. K., & Kang, M. The biological toxicities of two crystalline phases and differential sizes of TiO2 nanoparticles during zebrafish embryogenesis development. Mol Cell Toxicol 8:317–326 (2012).
Yeo, M. K., & Park, H. G. Gene expression in zebrafish embryos following exposure to Cu-doped TiO2 and pure TiO2 nanometer-sized photocatalysts. Mol Cell Toxicol 8:127–137 (2012).
Stohs, S. J., & Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336 (1995).
Zhu, X., Chang, Y., & Chen, Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215 (2010).
Zhu, X., Zhou, J., & Cai, Z. The toxicity and oxidative stress of TiO2 nanoparticles in marine abalone (Haliotis diversicolor supertexta). Mar Pollut Bull 63:334–338 (2011).
Hao, L., Wang, Z., & Xing, B. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci 21:1459–1466 (2009).
Ghasemi, S., Rahimnejad, S., Setayesh, S. R., Rohani, S., & Gholami, M. R. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J Hazard Mater 172:1573–1578 (2009).
Liu, Y., Wang, Z., Fan, W., Geng, Z., & Feng, L. Enhancement of the photocatalytic performance of Ni-loaded TiO2 photocatalyst under sunlight. Ceram Int 40:3887–3893 (2014).
Huang, Y. W., Wu, C. H., & Aronstam, R. S. Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 3:4842–4859 (2010).
Manke, A., Wang, L., & Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:1–15 (2013).
Dasari, T. P., Pathakoti, K., Hwang, H. M. Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. J Environ Sci (China) 25:882–888 (2013).
Park, S. et al. Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol 19:59–65 (2007).
Aboelzahab, A., Azad, A. M., & Goel, V. Necrosis of Staphylococcus aureus by the electrospun Fe- and Ag-Doped TiO2 nanofibers. ISRN Orthop 2012:1–11 (2012).
Zhang, X. Q., Yin, L. H., Tang, M., & Pu, Y. P. ZnO, TiO2, SiO2, and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomed Environ Sci 24:661–669 (2011).
Westerfield, M. The zebrafish book: A guide for the laboratory use of zebrafish Danio (Brachydanio) rerio. Institute of Neuroscience, University of Oregon. Available at http://zfin.org/zf_info/zfbook/zfbk.html .
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310 (1995).
Gawlitta, D., Oomens, C. W., Baaijens, F. P., & Bouten, C. V. Evaluation of a continuous quantification method of apoptosis and necrosis in tissue cultures. Cytotechnology 46:139–150 (2004).