Tác động của liệu pháp photobiomodulation đỏ và gần hồng ngoại mức thấp đến cơn đau và chức năng trong bệnh tendinopathy: đánh giá hệ thống và phân tích tổng hợp các thử nghiệm kiểm soát ngẫu nhiên

Nicholas Tripodi1,2,3, Jack Feehan1,3,4, Maja Husaric1,2, Fotios Sidiroglou2,5, Vasso Apostolopoulos1
1Institute for Health and Sport, Victoria University, Melbourne, Australia
2First Year College, Victoria University, Melbourne, Australia
3Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Australia
4Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
5Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia

Tóm tắt

Bệnh tendinopathy là một tình trạng lâm sàng phổ biến có thể ảnh hưởng đáng kể đến chức năng thể chất và chất lượng cuộc sống của một người. Mặc dù liệu pháp tập luyện là phương pháp chính trong quản lý bệnh tendinopathy, nhưng vẫn còn nhiều liệu pháp hỗ trợ tiềm năng chưa được nghiên cứu đầy đủ, trong đó có photobiomodulation (PBM). PBM sử dụng các bước sóng ánh sáng khác nhau để tạo ra một hiệu ứng sinh học. Trong khi PBM thường được sử dụng trong quản lý bệnh tendinopathy, bằng chứng chất lượng cao hỗ trợ sự hữu ích của nó vẫn còn thiếu. Một cuộc tìm kiếm hệ thống trên các cơ sở dữ liệu Pubmed, CINAHL, SCOPUS, Cochrane Database, Web of Science và SPORTSDICUS đã được thực hiện để tìm các bài báo đủ điều kiện vào tháng 8 năm 2020. Các thử nghiệm kiểm soát ngẫu nhiên (RCT) sử dụng PBM đỏ hoặc gần hồng ngoại để điều trị các rối loạn tendinopathy và so sánh với nhóm giả dược hoặc 'can thiệp khác' đã được đưa vào. Dữ liệu về cơn đau và chức năng đã được trích xuất từ các nghiên cứu được chọn. Dữ liệu được tổng hợp bằng cách sử dụng mô hình hiệu ứng ngẫu nhiên. Phân tích tổng hợp được thực hiện bằng cách sử dụng các chỉ số chênh lệch trung bình (MD) và chênh lệch trung bình chuẩn hóa (SMD). Tổng cộng có 17 thử nghiệm được đưa vào (n = 835). Khi so sánh chỉ với các can thiệp khác, PBM đã làm giảm cơn đau tương tự (MD -0.09; 95% CI − 0.79 đến 0.61) và cải thiện chức năng ít hơn (SMD -0.52; 95% CI − 0.81 đến − 0.23). Khi so sánh PBM cộng với tập luyện với điều trị giả dược cộng với tập luyện, PBM cho thấy sự giảm cơn đau lớn hơn (MD 1.06; 95% CI 0.57 đến 1.55) và cải thiện chức năng (MD 5.65; 95% CI 0.25 đến 11.04). Khi so sánh PBM cộng với tập luyện với các can thiệp khác cộng với tập luyện, không có sự khác biệt nào về mức độ đau (MD 0.31; 95% CI − 0.07 đến 0.70). Hầu hết các nghiên cứu được đánh giá là có nguy cơ thiên lệch thấp. Các chỉ số kết quả được phân loại là chứng cứ rất thấp đến trung bình theo công cụ Grading of Recommendation, Development and Evaluation (GRADE). Có bằng chứng chất lượng rất thấp đến trung bình cho thấy rằng PBM có tác dụng như một liệu pháp độc lập và/hoặc bổ sung cho các rối loạn tendinopathy. Số đăng ký PROPERO: CRD42020202508 .

Từ khóa


Tài liệu tham khảo

Cardoso TB, Pizzari T, Kinsella R, Hope D, Cook JL. Current trends in tendinopathy management. Best Pract Res Clin Rheumatol. 2019;33(1):122–40. https://doi.org/10.1016/j.berh.2019.02.001. de Jonge S, Van den Berg C, de Vos R-J, Van Der Heide H, Weir A, Verhaar J, et al. Incidence of midportion Achilles tendinopathy in the general population. Br J Sports Med. 2011;45(13):1026–8. https://doi.org/10.1136/bjsports-2011-090342. Lopes AD, Hespanhol LC, Yeung SS, Costa LOP. What are the main running-related musculoskeletal injuries? Sports Med. 2012;42(10):891–905. https://doi.org/10.1007/BF03262301. Hopkins C, Fu S-C, Chua E, Hu X, Rolf C, Mattila VM, et al. Critical review on the socio-economic impact of tendinopathy. Asia Pacific J Sports Med Arthrosc Rehabil Technol. 2016;4:9–20. https://doi.org/10.1016/j.asmart.2016.01.002. Khan KM, Cook JL, Taunton JE, Bonar F. Overuse tendinosis, not tendinitis: part 1: a new paradigm for a difficult clinical problem. Phys Sportsmed. 2000;28(5):38–48. https://doi.org/10.3810/psm.2000.05.890. Khan KM, Cook JL, Kannus P, Maffulli N, Bonar S. Time to abandon the “tendinitis” myth: painful, overuse tendon conditions have a non-inflammatory pathology. London: British Medical Journal Publishing Group; 2002. Cook J, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med. 2009;43(6):409–16. https://doi.org/10.1136/bjsm.2008.051193. Scott A, Squier K, Alfredson H, Bahr R, Cook JL, Coombes B, et al. Icon 2019: international scientific tendinopathy symposium consensus: clinical terminology. Br J Sports Med. 2020;54(5):260–2. https://doi.org/10.1136/bjsports-2019-100885. Cook J. The role of imaging in diagnosing and managing tendinopathy. Ultrasound Med Biol. 2019;45:S16–S7. https://doi.org/10.1016/j.ultrasmedbio.2019.07.464. Docking SI, Cook J. Imaging and its role in tendinopathy: current evidence and the need for guidelines. Curr Radiol Rep. 2018;6(11):43. https://doi.org/10.1007/s40134-018-0302-8. Mallows A, Debenham J, Walker T, Littlewood C. Association of psychological variables and outcome in tendinopathy: a systematic review. Br J Sports Med. 2017;51(9):743–8. https://doi.org/10.1136/bjsports-2016-096154. Silbernagel KG, Vicenzino BT, Rathleff MS, Thorborg K. Isometric exercise for acute pain relief: is it relevant in tendinopathy management? London: BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine; 2019. Mitham K, Mallows A, Debenham J, Seneviratne G, Malliaras P. Conservative management of acute lower limb tendinopathies: a systematic review. Musculoskelet Care. 2020;19(1):110-26. Tripodi N, Feehan J, Husaric M, Kiatos D, Sidiroglou F, Fraser S, et al. Good, better, best? The effects of polarization on photobiomodulation therapy. J Biophotonics. 2020;13(5):e201960230. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516–33. https://doi.org/10.1007/s10439-011-0454-7. Lima PL, Pereira CV, Nissanka N, Arguello T, Gavini G, da Costa Maranduba CM, et al. Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase. J Photochem Photobiol B Biol. 2019;194:71-5. Hamblin MR. Mechanisms and mitochondrial redox signaling in Photobiomodulation. Photochem Photobiol. 2018;94(2):199–212. https://doi.org/10.1111/php.12864. Feehan J, Tripodi N, Fraser S, Mikkelsen K, Thewlis A, Kiatos D, et al. Polarized light therapy: Shining a light on the mechanism underlying its immunomodulatory effects. J Biophotonics. 2019;13(3):e201960177. Chow R, editor. Is relief of pain with low-level laser therapy (LLLT) a clinical manifestation of laser-induced neural inhibition? Boston: Springer US; 2008. Chen MH, Huang YC, Sun JS, Chao YH, Chen MH. Second messengers mediating the proliferation and collagen synthesis of tenocytes induced by low-level laser irradiation. Lasers Med Sci. 2015;30(1):263–72. https://doi.org/10.1007/s10103-014-1658-5. Tsai W-C, Cheng J-W, Chen J-L, Chen C-Y, Chang H-N, Liao Y-H, et al. Low-level laser irradiation stimulates tenocyte proliferation in association with increased NO synthesis and upregulation of PCNA and cyclins. Lasers Med Sci. 2014;29(4):1377–84. https://doi.org/10.1007/s10103-014-1528-1. Chen CH, Tsai JL, Wang YH, Lee CL, Chen JK, Huang MH. Low-level laser irradiation promotes cell proliferation and mRNA expression of type I collagen and decorin in porcine achilles tendon fibroblasts in vitro. J Orthop Res. 2009;27(5):646–50. https://doi.org/10.1002/jor.20800. Tsai WC, Hsu CC, Pang JH, Lin MS, Chen YH, Liang FC. Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression. PLoS One. 2012;7(5):e38235. https://doi.org/10.1371/journal.pone.0038235. Pires D, Xavier M, Araújo T, Silva JA Jr, Aimbire F, Albertini R. Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci. 2011;26(1):85–94. https://doi.org/10.1007/s10103-010-0811-z. Torres-Silva R, Lopes-Martins RA, Bjordal JM, Frigo L, Rahouadj R, Arnold G, et al. The low level laser therapy (LLLT) operating in 660 nm reduce gene expression of inflammatory mediators in the experimental model of collagenase-induced rat tendinitis. Lasers Med Sci. 2015;30(7):1985–90. https://doi.org/10.1007/s10103-014-1676-3. Locke RC, Lemmon EA, Dudzinski E, Kopa SC, Wayne JM, Soulas JM, et al. Photobiomodulation does not influence maturation and mildly improves functional healing of mouse achilles tendons. J Orthop Res. 2020;38(8):1866-75. Pessoa DR, Nicolau RA. Effects of therapy with light emitting diode (LED) in the calcaneal tendon lesions of rats: a literature review. Sci World J. 2019;2019. Mamais I, Papadopoulos K, Lamnisos D, Stasinopoulos D. Effectiveness of low level laser therapy (LLLT) in the treatment of lateral elbow tendinopathy (LET): an umbrella review. Laser Ther. 2018;27(3):174–86. https://doi.org/10.5978/islsm.27_18-OR-16. Martimbianco ALC, Ferreira RES, Latorraca COC, Bussadori SK, Pacheco RL, Riera R. Photobiomodulation with low-level laser therapy for treating Achilles tendinopathy: a systematic review and meta-analysis. Clin Rehabil. 2020;34(6):713–22. https://doi.org/10.1177/0269215520912820. Haslerud S, Magnussen LH, Joensen J, Lopes-Martins RA, Bjordal JM. The efficacy of low-level laser therapy for shoulder tendinopathy: a systematic review and meta-analysis of randomized controlled trials. Physiother Res Int. 2015;20(2):108–25. https://doi.org/10.1002/pri.1606. Tumilty S, Munn J, McDonough S, Hurley DA, Basford JR, Baxter GD. Low level laser treatment of tendinopathy: a systematic review with meta-analysis. Photomed Laser Surg. 2010;28(1):3–16. https://doi.org/10.1089/pho.2008.2470. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9. https://doi.org/10.7326/0003-4819-151-4-200908180-00135. Bjordal JM. Low level laser therapy (LLLT) and World Association for Laser Therapy (WALT) dosage recommendations. New Rochelle: Mary Ann Liebert, Inc; 2012. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. https://doi.org/10.1136/bmj.d5928. Vicenzino B, de Vos R-J, Alfredson H, Bahr R, Cook JL, Coombes BK, et al. ICON 2019—international scientific tendinopathy symposium consensus: there are nine CORE health-related domains for tendinopathy (CORE DOMAINS): Delphi study of healthcare professionals and patients. Br J Sports Med. 2020;54(8):444–51. https://doi.org/10.1136/bjsports-2019-100894. Emanet SK, Altan LI, Yurtkuran M. Investigation of the effect of GaAs laser therapy on lateral epicondylitis. Photomed Laser Surg. 2010;28(3):397–403. https://doi.org/10.1089/pho.2009.2555. Eslamian F, Shakouri SK, Ghojazadeh M, Nobari OE, Eftekharsadat B. Effects of low-level laser therapy in combination with physiotherapy in the management of rotator cuff tendinitis. Lasers Med Sci. 2012;27(5):951–8. https://doi.org/10.1007/s10103-011-1001-3. Liu X-G, Cheng L, Song J-M. Effects of low-level laser therapy and eccentric exercises in the treatment of patellar tendinopathy. Int J Photoenergy. 2014;2014:1–6. https://doi.org/10.1155/2014/785386. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T PM, Welch VA, et al. Cochrane handbook for systematic reviews of interventions Cochrane; 2020. Available from: www.training.cochrane.org/handbook. Schünemann H, Brożek J, Guyatt G, Oxman A, editors. GRADE handbook for grading quality of evidence and strength of recommendations: The GRADE Working Group; 2013. Available from: guidelinedevelopment.org/handbook Tomazoni SS, Almeida MO, Bjordal JM, Stausholm MB, Machado CSM, Leal-Junior ECP, et al. Photobiomodulation therapy does not decrease pain and disability in people with non-specific low back pain: a systematic review. J Phys. 2020;66(3):155–65. Abrisham SM, Kermani-Alghoraishi M, Ghahramani R, Jabbari L, Jomeh H, Zare M. Additive effects of low-level laser therapy with exercise on subacromial syndrome: a randomised, double-blind, controlled trial. Clin Rheumatol. 2011;30(10):1341–6. https://doi.org/10.1007/s10067-011-1757-7. Baktir S, Razak Ozdincler A, Kaya Mutlu E, Bilsel K. The short-term effectiveness of low-level laser, phonophoresis, and iontophoresis in patients with lateral epicondylosis. J Hand Ther. 2019;32(4):417–25. https://doi.org/10.1016/j.jht.2018.01.002. Bal A, Eksioglu E, Gurcay E, Gulec B, Karaahmet O, Cakci A. Low-level laser therapy in subacromial impingement syndrome. Photomed Laser Surg. 2009;27(1):31–6. https://doi.org/10.1089/pho.2007.2222. Celik D, Anaforoglu KB. Photobiomodulation therapy versus extracorporeal shock wave therapy in the treatment of lateral epicondylitis. Photobiomodul Photomed Laser Surg. 2019;37(5):269–75. https://doi.org/10.1089/photob.2018.4533. Devrimsel G, Kucukali Turkyilmaz A, Yildirim M, Ulasli MA. A comparison of laser and extracorporeal shock wave therapies in treatment of lateral epicondylitis. Turkiye Fiziksel Tip Rehabil Dergisi. 2014;60(3):194–8. https://doi.org/10.5152/tftrd.2014.31643. Dogan SK, Ay S, Evcik D. The effectiveness of low laser therapy in subacromial impingement syndrome: a randomized placebo controlled double-blind prospective study. Clinics (Sao Paulo). 2010;65(10):1019–22. https://doi.org/10.1590/S1807-59322010001000016. Kaydok E, Ordahan B, Solum S, Karahan AY. Short-term efficacy comparison of high-intensity and low-intensity laser therapy in the treatment of lateral epicondylitis: a randomized double-blind clinical study. Arch Rheumatol. 2020;35(1):60–7. https://doi.org/10.5606/ArchRheumatol.2020.7347. Kibar S, Konak HE, Evcik D, Ay S. Laser acupuncture treatment improves pain and functional status in patients with subacromial impingement syndrome: a randomized, double-blind, Sham-Controlled Study. Pain Med. 2017;18(5):980–7. https://doi.org/10.1093/pm/pnw197. Lam LK, Cheing GL. Effects of 904-nm low-level laser therapy in the management of lateral epicondylitis: a randomized controlled trial. Photomed Laser Surg. 2007;25(2):65–71. https://doi.org/10.1089/pho.2006.2047. Sharma R, Aggarwal AN, Bhatt S, Kumar S, Bhargava SK. Outcome of low level lasers versus ultrasonic therapy in de Quervain's tenosynovitis. Indian J Orthop. 2015;49(5):542–8. https://doi.org/10.4103/0019-5413.164050. Stergioulas A. Effects of low-level laser and plyometric exercises in the treatment of lateral epicondylitis. Photomed Laser Surg. 2007;25(3):205–13. https://doi.org/10.1089/pho.2007.2041. Stergioulas A, Stergioula M, Aarskog R, Lopes-Martins RA, Bjordal JM. Effects of low-level laser therapy and eccentric exercises in the treatment of recreational athletes with chronic achilles tendinopathy. Am J Sports Med. 2008;36(5):881–7. https://doi.org/10.1177/0363546507312165. Yavuz F, Duman I, Taskaynatan MA, Tan AK. Low-level laser therapy versus ultrasound therapy in the treatment of subacromial impingement syndrome: a randomized clinical trial. J Back Musculoskelet Rehabil. 2014;27(3):315–20. https://doi.org/10.3233/BMR-130450. Yeldan I, Cetin E, Ozdincler AR. The effectiveness of low-level laser therapy on shoulder function in subacromial impingement syndrome. Disabil Rehabil. 2009;31(11):935–40. https://doi.org/10.1080/09638280802377985. Alizadeh A, Mardani-Kivi M, Ebrahimzadeh MH, Rouhani A, Hashemi K, Saheb-Ekhtiari K. A randomized prospective comparative study of four methods of biceps tendonitis treatment: ultrasound, low-level laser + ultrasound, intra-sheath, and extra-sheath corticosteroid guided injection. Shiraz e Med J. 2018;19(11) no pagination. Güloğlu SB. Comparison of low-level laser treatment and extracorporeal shock wave therapy in subacromial impingement syndrome: a randomized, prospective clinical study. Lasers in Medical Science. 2021;36(4);773-81. Otadi K, Hadian MR, Olyaei G, Jalaie S. The beneficial effects of adding low level laser to ultrasound and exercise in Iranian women with shoulder tendonitis: a randomized clinical trial. J Back Musculoskelet Rehabil. 2012;25(1):13–9. https://doi.org/10.3233/BMR-2012-0305. Skorupska E, Lisinski P, Samborski W. The effectiveness of the conservative versus myofascial pain physiotherapy in tennis elbow patients: double-blind randomized trial of 80 patients. J Musculoskelet Pain. 2012;20(1):41–50. https://doi.org/10.3109/10582452.2011.635846. Tumilty S, McDonough S, Hurley DA, Baxter GD. Clinical effectiveness of low-level laser therapy as an adjunct to eccentric exercise for the treatment of Achilles' tendinopathy: a randomized controlled trial. Arch Phys Med Rehabil. 2012;93(5):733–9. https://doi.org/10.1016/j.apmr.2011.08.049. Stausholm MB, Naterstad IF, Joensen J, Lopes-Martins RÁB, Sæbø H, Lund H, et al. Efficacy of low-level laser therapy on pain and disability in knee osteoarthritis: systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open. 2019;9(10):e031142. Dean BJF, Lostis E, Oakley T, Rombach I, Morrey ME, Carr AJ. The risks and benefits of glucocorticoid treatment for tendinopathy: a systematic review of the effects of local glucocorticoid on tendon. Semin Arthritis Rheum. 2014;43(4):570-6. Elsevier.