The effect of long-term climatic variability on wild mammal populations in a tropical forest hotspot: A business intelligence framework

Ecological Informatics - Tập 73 - Trang 101924 - 2023
Luciano da Cunha1, Mariana Silva Ferreira1,2,3, Rui Cerqueira2,3, Anderson Amendoeira Namen1,4
1Mestrado Profissional em Ciências do Meio Ambiente, Universidade Veiga de Almeida, Rio de Janeiro, Brazil
2Laboratório de Vertebrados, Departamento de Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
3Programa de Pós-graduação em Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
4Departamento de Modelagem Computacional, Universidade do Estado do Rio de Janeiro – Instituto Politécnico, Rio de Janeiro, Brazil

Tài liệu tham khảo

Ain, 2019, Two decades of research on business intelligence system adoption, utilization and success–a systematic literature review, Decis. Support. Syst., 125, 10.1016/j.dss.2019.113113 Arneth, 2020, Post-2020 biodiversity targets need to embrace climate change, Proc. Natl. Acad. Sci., 117, 30882, 10.1073/pnas.2009584117 Barros, 2015, Timing and environmental cues associated with triggering of reproductive activity in Atlantic Forest marsupials, Mamm. Biol., 80, 141, 10.1016/j.mambio.2014.07.008 Bimonte, 2021, Collect and analysis of agro-biodiversity data in a participative context: a business intelligence framework, Ecological Informatics, 61, 101231, 10.1016/j.ecoinf.2021.101231 Cahill, 2013, How does climate change cause extinction?, Proc. R. Soc. B Biol. Sci., 280, 20121890, 10.1098/rspb.2012.1890 Cai, 2015, Increased frequency of extreme La Niña events under greenhouse warming. Nature, Climate Change, 5, 132 Cai, 2020, Climate impacts of the El Niño–southern oscillation on South America, Nature Reviews Earth & Environment, 1, 215, 10.1038/s43017-020-0040-3 Cai, 2021, Changing El Niño–Southern Oscillation in a warming climate, Nature Reviews Earth & Environment, 2, 628, 10.1038/s43017-021-00199-z Capinha, 2021, Deep learning for supervised classification of temporal data in ecology, Ecological Informatics, 61, 10.1016/j.ecoinf.2021.101252 Chan, 2022, Digital media consumption: using metrics, patterns and dashboards to enhance data-driven decision-making, J. Consum. Behav., 21, 80, 10.1002/cb.1994 Coelho, 2022, Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods, Theor. Appl. Climatol., 71, 185 Crick, 2004, The impact of climate change on birds, Ibis, 146, 48, 10.1111/j.1474-919X.2004.00327.x Enfield, 1997, Tropical atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation, Journal of Geophysical Research C: Oceans, 102, 929, 10.1029/96JC03296 Fayyad, 1996, The KDD process knowledge from volumes of data, Communication of the ACM, 39, 27, 10.1145/240455.240464 Ferreira, 2016, Seasonal dynamics with compensatory effects regulate populations of tropical forest marsupials: a 16-year study, Oecologia, 182, 1095, 10.1007/s00442-016-3735-x Ferreira, 2020, What are the main drivers of survival and recruitment in tropical forest marsupials? A 16-year study, J. Mammal., 101, 515, 10.1093/jmammal/gyaa013 Grimm, 2004, How do La Niña events disturb the summer monsoon system in Brazil?, Clim. Dyn., 22, 123, 10.1007/s00382-003-0368-7 Guan, 2022, The synergistic impact of SPOD and ENSO on ITCZ: observation study, Clim. Dyn., 10.1007/s00382-022-06335-9 Hashemi, 2021, Forecasting El Nino and La Nina using spatially and temporally structured predictors and a convolutional neural network, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3438, 10.1109/JSTARS.2021.3065585 Hassani, 2019, Big data and climate change, Big Data and Cognitive Computing, 3, 12, 10.3390/bdcc3010012 Hintzen, 2020, Relationship between conservation biology and ecology shown through machine reading of 32,000 articles, Conserv. Biol., 34, 721, 10.1111/cobi.13435 Holmgren, 2001, El Niño Effects on the dynamics of terrestrial ecosystems, Trends Ecol. Evol., 16, 89, 10.1016/S0169-5347(00)02052-8 Jaksic, 2001, Ecological effects of El Niño in terrestrial ecosystems of western South America, Ecography, 24, 241, 10.1034/j.1600-0587.2001.240301.x Jones, 2022, Long-term ecological research on ecosystem responses to climate change, BioScience, 72, 814, 10.1093/biosci/biac021 Kajin, 2008, Demografia, dinâmica e genética de populações de Didelphis aurita (Marsupialia, Didelphidae) na Mata Atlântica do Estado do Rio de Janeiro, Doctoral thesis. Departamento de Genética da Universidade Federal do Rio de Janeiro. p., 129 Kelling, 2009, DATA-intensive science: a new paradigm for biodiversity studies, BioScience, 59, 613, 10.1525/bio.2009.59.7.12 Kimball, 2013 Krebs, 1966, Demographic changes in fluctuating populations of Microtus californicus, Ecol. Monogr., 36, 239, 10.2307/1942418 Laurance, 2009, Conserving the hottest of the hotspots, Biol. Conserv., 142, 1137, 10.1016/j.biocon.2008.10.011 Leiner, 2009, Territoriality in females of the slender opossum (Marmosops paulensis) in the Atlantic Forest of Brazil, J. Trop. Ecol., 25, 671, 10.1017/S0266467409990228 Lindenmayer, 2012, Value of long-term ecological studies, Austral Ecology, 37, 745, 10.1111/j.1442-9993.2011.02351.x Lindenmayer, 2021, Long-term empirical studies highlight multiple drivers of temporal change in bird fauna in the wet forests of Victoria, south-eastern Australia, Front. Ecol. Evol., 9, 10.3389/fevo.2021.610147 Maestripieri, 2009 Mazzarella, 2009, The El Niño events: their classification and scale-invariance laws, Ann. Geophys., 52, 517 Mcphaden, 2020, Introduction to El Niño southern oscillation in a changing climate, 1–19 Michener, 2012, Ecoinformatics: supporting ecology as a data-intensive science, Trends Ecol. Evol., 27, 85, 10.1016/j.tree.2011.11.016 Michener, 2011, Long term ecological research and information management, Ecological Informatics, 6, 13, 10.1016/j.ecoinf.2010.11.005 Ostfeld, 1990, The ecology of territoriality in small mammals, Trends Ecol. Evol., 5, 411, 10.1016/0169-5347(90)90026-A Passamani, 2015, Use of space by the marsupials Gracilinanus microtarsus (Gardner and Creighton, 1989) and Marmosops incanus (Lund, 1840) in an Atlantic Forest of southeastern Brazil, J. Nat. Hist., 49, 1225, 10.1080/00222933.2014.981311 Popovič, 2012, Towards business intelligence systems success: effects of maturity and culture on analytical decision making, Decis. Support. Syst., 54, 729, 10.1016/j.dss.2012.08.017 Princé, 2015, Climate change in our backyards: the reshuffling of North America’s winter bird communities, Glob. Chang. Biol., 21, 572, 10.1111/gcb.12740 R CORE TEAM, 2019 Rast, 2020, Machine learning goes wild: using data from captive individuals to infer wildlife behaviours, PLoS One, 15, 10.1371/journal.pone.0227317 Rolim, 2005, Biomass change in an Atlantic tropical moist forest: the ENSO effect in permanent sample plots over a 22-year period, Oecologia, 142, 238, 10.1007/s00442-004-1717-x Román-Palacios, 2020, Recent responses to climate change reveal the drivers of species extinction and survival, Proc. Natl. Acad. Sci., 117, 4211, 10.1073/pnas.1913007117 Salguero-Gómez, 2021, Four key challenges in the open-data revolution, J. Anim. Ecol., 90, 2000, 10.1111/1365-2656.13567 Salinas, 2017, Data warehouse and big data integration, International Journal of Computer Science and Information Technology, 9, 1, 10.5121/ijcsit.2017.9201 Sarka, 2017 Sautot, 2019, A semi-automatic design methodology for (Big) Data Warehouse transforming facts into dimensions, IEEE Trans. Knowl. Data Eng., 33, 28, 10.1109/TKDE.2019.2925621 Stenseth, 2003, Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond, Proc. R. Soc. B Biol. Sci., 270, 2087, 10.1098/rspb.2003.2415 Timmermann, 1999, Increased El Niño frequency in a climate model forced by future greenhouse warming, Nature, 398, 694, 10.1038/19505 Trenberth, 1996, The 1990–1995 El Niño-Southern oscillation event: longest on record, Geophys. Res. Lett., 23, 57, 10.1029/95GL03602 Vaisman, 2022, Data Warehouse Systems - Design and Implementation Vieira, 2019, Scaling of movements with body mass in a small opossum: evidence for an optimal body size in mammals, J. Mammal., 100, 1765, 10.1093/jmammal/gyz166 Villar, 2018, Integrating and analyzing medical and environmental data using ETL and Business Intelligence tools, Int. J. Biometeorol., 62, 1085, 10.1007/s00484-018-1511-9 Wan, 2022, Broad-scale climate variation drives the dynamics of animal populations: a global multi-taxa analysis, Biol. Rev., 10.1111/brv.12888 Weiskopf, 2020, Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States, Sci. Total Environ., 733, 10.1016/j.scitotenv.2020.137782 Woinarski, 2017, The contribution of policy, law, management, research, and advocacy failings to the recent extinctions of three Australian vertebrate species, Conserv. Biol., 31, 13, 10.1111/cobi.12852 Zangrandi, 2011 Zangrandi, 2022, More than semelparity or iteroparity: Diversity of reproductive strategies in New World marsupials Zaza, 2018, BI4IPM: a business intelligence system for the analysis of olive tree's integrated pest management, International Journal of Agricultural and Environmental Information Systems, 9, 16, 10.4018/IJAEIS.2018010102 Zaza, 2018, A new decision-support system for the historical analysis of integrated pest management activities on olive crops based on climatic data, Comput. Electron. Agric., 148, 237, 10.1016/j.compag.2018.03.015