The effect of local mass displacement on coupled fields in dielectrics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bredov MM, Rumyantsev VV, Toptyhin IN (1985) Classic electrodynamics (Клaccичecкaя элeктpoдинaмикa). Nauka, Moscow (In Russian)
Burak Y (1987) Constitutive equations of locally gradient thermomechanics. Dopovidi Akad Nauk URSR (Proc Acad Sci Ukr SSR) 12:19–23 (In Ukrainian)
Burak YI, Kondrat VF, Hrytsyna OR (2007) Subsurface mechanoelectromagnetic phenomena in thermoelastic porized bodies in the case of local displacements of mass. Mater Sci 43(4):449–463
Burak Y, Kondrat V, Hrytsyna O (2008) An introduction of the local displacements of mass and electric charge phenomena into the model of the mechanics of polarized electromagnetic solids. J Mech Mater Struct 3(6):1037–1046
Chapla Y, Kondrat S, Hrytsyna O, Kondrat V (2009) On electromechanical phenomena in thin dielectric films. Task Q 13(1–2):145–154
Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410
Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487
Greer JR, Nix WD (2005) Size dependence of mechanical properties of gold at the sub-micron scale. Appl Phys A Mater Sci Process 80(8):1625–1629
Gurevich VL, Tagantsev AK (1982) Theory for the thermopolarization effect in dielectrics having a center of inversion. JETP Lett 35(3):128–130
Hrytsyna O (2020a) Applications of the local gradient elasticity to the description of the size effect of shear modulus. SN Appl Sci 2:1453
Hrytsyna O (2020b) Bernoulli-Euler beam model based on local gradient theory of elasticity. J Mech Mater Struct 15(4):471–487
Hrytsyna O (2020c) Local gradient Bernoulli-Euler beam model for dielectrics: effect of local mass displacement on coupled field. Math Mech Solids 2020. https://journals.sagepub.com/eprint/3KT3SIZHNJMUN2QAGAID/full
Hrytsyna O, Kondrat V (2020) Local gradient theory for dielectrics: fundamentals and applications. Jenny Stanford Publishing Pte Ltd, Singapore
Kallaev SN, Abdullaev AA, Gladkii VV (1991) Thermopolarization effect in an incommensurate phase of a crystal. JETP Lett 54(11):632–635
Kholkin AL, Trepakov VA, Smolenskii GA (1982) Thermopolarization currents in dielectrics. JETP Lett 35(3):124–127
Kogan SM (1964) Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov Phys Solid State 5:2069–2070
Kondrat V, Hrytsyna O (2012) Local gradient theory of dielectrics with polarization inertia and irreversibility of local mass displacement. J Mech Mater Struct 7(3):285–296
Landau LD, Lifshitz EM (1984) Electrodynamics of continuum media, 2nd edn. Butterworth-Heinemann, Oxford
Liang X, Shen S (2013) Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. Int J Appl Mech 5:1350015
Liang X, Hu S, Shen S (2014) Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater Struct 23:035020
Lu J, Liang X, Hu S (2015) Flexoelectricity in solid dielectrics: from theory to applications. Comput Mater Cont 45(3):145–162
Maranganti R, Sharma ND, Sharma P (2006) Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s functions and embedded inclusions. Phys Rev B 74:014110
Marchenko IG, Neklyudov IM, Marchenko II (2009) Collective atomic ordering processes during the low-temperature film deposition. Dopovidi NAN Ukr (Proc Nat Acad Sci Ukr) 10:97–103 (In Russian)
Maugin GA (1980) The method of virtual power in continuum mechanics: applications to coupled fields. Acta Mech 35:1–80
Nowacki W (1970) Teoria spręńżystości. Państwowe Wydawnictwo Naukowe, Warszawa (In Polish)
Nowacki W (1983) Efekty elektromagnetyczne w stałych ciałach odkształcalnych. Państwowe Wydawnictwo Naukowe, Warszawa (In Polish)
Smolenskii GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RRE, Shur MS (1971) Ferroelectrics and antiferroelectrics. Izd. Nauka, Leningrad (In Russian)
Tagantsev AK (1986) Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys Rev B 34:5883
Trepakov VA, Nurieva KM, Tagantsev AK (1989) Recent developments of the thermopolarization effect investigation. Ferroelectrics 94(1):377–381
Trepakov V, Rafikov E, Marvan M, Savinov A, Jastrabik L (1995) Reverse thermopolarization effects in dielectrics. Ferroelectr Lett Sect 19(3–4):51–56
Weinberg MS (1999) Working equations for piezoelectric actuators and sensors. J Microelectromech Syst 8(4):529–533
Yan Z, Jiang L (2017) Modified continuum mechanics modeling on size-dependent properties of piezoelectric nanomaterials: a review. Nanomaterials. https://doi.org/10.3390/nano7020027
Yang XM, Hu YT, Yang JS (2004) Electric field gradient effects in antiplane problems of polarized ceramics. Int J Solids Struct 41:6801–6811