The effect of local mass displacement on coupled fields in dielectrics

Olha Hrytsyna1
1Department of Mechanics, Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská cesta 9, 84503, Bratislava 45, Slovakia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253

Bredov MM, Rumyantsev VV, Toptyhin IN (1985) Classic electrodynamics (Клaccичecкaя элeктpoдинaмикa). Nauka, Moscow (In Russian)

Burak Y (1987) Constitutive equations of locally gradient thermomechanics. Dopovidi Akad Nauk URSR (Proc Acad Sci Ukr SSR) 12:19–23 (In Ukrainian)

Burak YI, Kondrat VF, Hrytsyna OR (2007) Subsurface mechanoelectromagnetic phenomena in thermoelastic porized bodies in the case of local displacements of mass. Mater Sci 43(4):449–463

Burak Y, Kondrat V, Hrytsyna O (2008) An introduction of the local displacements of mass and electric charge phenomena into the model of the mechanics of polarized electromagnetic solids. J Mech Mater Struct 3(6):1037–1046

Chapla Y, Kondrat S, Hrytsyna O, Kondrat V (2009) On electromechanical phenomena in thin dielectric films. Task Q 13(1–2):145–154

Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410

Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487

Greer JR, Nix WD (2005) Size dependence of mechanical properties of gold at the sub-micron scale. Appl Phys A Mater Sci Process 80(8):1625–1629

Gurevich VL, Tagantsev AK (1982) Theory for the thermopolarization effect in dielectrics having a center of inversion. JETP Lett 35(3):128–130

Hrytsyna O (2020a) Applications of the local gradient elasticity to the description of the size effect of shear modulus. SN Appl Sci 2:1453

Hrytsyna O (2020b) Bernoulli-Euler beam model based on local gradient theory of elasticity. J Mech Mater Struct 15(4):471–487

Hrytsyna O (2020c) Local gradient Bernoulli-Euler beam model for dielectrics: effect of local mass displacement on coupled field. Math Mech Solids 2020. https://journals.sagepub.com/eprint/3KT3SIZHNJMUN2QAGAID/full

Hrytsyna O, Kondrat V (2020) Local gradient theory for dielectrics: fundamentals and applications. Jenny Stanford Publishing Pte Ltd, Singapore

Kafadar CB (1971) Theory of multipoles in classical electromagnetism. Int J Eng Sci 9:831–853

Kallaev SN, Abdullaev AA, Gladkii VV (1991) Thermopolarization effect in an incommensurate phase of a crystal. JETP Lett 54(11):632–635

Kholkin AL, Trepakov VA, Smolenskii GA (1982) Thermopolarization currents in dielectrics. JETP Lett 35(3):124–127

Kogan SM (1964) Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov Phys Solid State 5:2069–2070

Kondrat V, Hrytsyna O (2012) Local gradient theory of dielectrics with polarization inertia and irreversibility of local mass displacement. J Mech Mater Struct 7(3):285–296

Landau LD, Lifshitz EM (1984) Electrodynamics of continuum media, 2nd edn. Butterworth-Heinemann, Oxford

Liang X, Shen S (2013) Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. Int J Appl Mech 5:1350015

Liang X, Hu S, Shen S (2014) Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater Struct 23:035020

Lu J, Liang X, Hu S (2015) Flexoelectricity in solid dielectrics: from theory to applications. Comput Mater Cont 45(3):145–162

Maranganti R, Sharma ND, Sharma P (2006) Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s functions and embedded inclusions. Phys Rev B 74:014110

Marchenko IG, Neklyudov IM, Marchenko II (2009) Collective atomic ordering processes during the low-temperature film deposition. Dopovidi NAN Ukr (Proc Nat Acad Sci Ukr) 10:97–103 (In Russian)

Maugin GA (1980) The method of virtual power in continuum mechanics: applications to coupled fields. Acta Mech 35:1–80

Mead CA (1961) Anomalous capacitance of thin dielectric structures. Phys Rev Lett 6:545–546

Mindlin RD (1968) Polarization gradient in elastic dielectrics. Int J Solids Struct 4:637–642

Nowacki W (1970) Teoria spręńżystości. Państwowe Wydawnictwo Naukowe, Warszawa (In Polish)

Nowacki W (1983) Efekty elektromagnetyczne w stałych ciałach odkształcalnych. Państwowe Wydawnictwo Naukowe, Warszawa (In Polish)

Smolenskii GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RRE, Shur MS (1971) Ferroelectrics and antiferroelectrics. Izd. Nauka, Leningrad (In Russian)

Tagantsev AK (1986) Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys Rev B 34:5883

Trepakov VA, Nurieva KM, Tagantsev AK (1989) Recent developments of the thermopolarization effect investigation. Ferroelectrics 94(1):377–381

Trepakov V, Rafikov E, Marvan M, Savinov A, Jastrabik L (1995) Reverse thermopolarization effects in dielectrics. Ferroelectr Lett Sect 19(3–4):51–56

Weinberg MS (1999) Working equations for piezoelectric actuators and sensors. J Microelectromech Syst 8(4):529–533

Yan Z, Jiang L (2017) Modified continuum mechanics modeling on size-dependent properties of piezoelectric nanomaterials: a review. Nanomaterials. https://doi.org/10.3390/nano7020027

Yang J (2006) Review of a few topics in piezoelectricity. Appl Mech Rev 59:335–345

Yang XM, Hu YT, Yang JS (2004) Electric field gradient effects in antiplane problems of polarized ceramics. Int J Solids Struct 41:6801–6811

Yudin PV, Tagantsev AK (2013) Fundamentals of flexoelectricity in solids. Nanotechnology 24:432001