The effect of intrinsically photosensitive retinal ganglion cell (ipRGC) stimulation on axial length changes to imposed optical defocus in young adults

Journal of Optometry - Tập 16 - Trang 53-63 - 2023
Ranjay Chakraborty1,2, Michael J. Collins3, Henry Kricancic3, Brett Davis3, David Alonso-Caneiro3, Fan Yi3, Karthikeyan Baskaran4
1Caring Futures Institute, Flinders University, Bedford Park, SA 5042, Australia
2College of Nursing and Health Sciences, Optometry and Vision Science, Sturt North, Flinders University, Bedford Park, SA 5042, Australia
3Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
4Department of Medicine and Optometry, Linnaeus University, Kalmar, Sweden

Tài liệu tham khảo

Berson, 2010, Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice, J Comp Neurol, 518, 2405, 10.1002/cne.22417 Schmidt, 2011, Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function, J Neurosci, 31, 16094, 10.1523/JNEUROSCI.4132-11.2011 Hattar, 2002, Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity, Science, 295, 1065, 10.1126/science.1069609 Gamlin, 2007, Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells, Vision Res, 47, 946, 10.1016/j.visres.2006.12.015 Berson, 2002, Phototransduction by retinal ganglion cells that set the circadian clock, Science, 295, 1070, 10.1126/science.1067262 Sand, 2012, Diverse types of ganglion cell photoreceptors in the mammalian retina, Prog Retin Eye Res, 31, 287, 10.1016/j.preteyeres.2012.03.003 Schmidt, 2011, Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions, Trends Neurosci, 34, 572, 10.1016/j.tins.2011.07.001 Hatori, 2008, Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses, PLoS ONE, 3, e2451, 10.1371/journal.pone.0002451 Hattar, 2006, Central projections of melanopsin-expressing retinal ganglion cells in the mouse, J Comp Neurol, 497, 326, 10.1002/cne.20970 Panda, 2002, Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting, Science, 298, 2213, 10.1126/science.1076848 Schmidt, 2014, A role for melanopsin in alpha retinal ganglion cells and contrast detection, Neuron, 82, 781, 10.1016/j.neuron.2014.03.022 Dacey, 2005, Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN, Nature, 433, 749, 10.1038/nature03387 Ecker, 2010, Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision, Neuron, 67, 49, 10.1016/j.neuron.2010.05.023 Schmidt, 2011, Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse, J Comp Neurol, 519, 1492, 10.1002/cne.22579 Vugler, 2007, Dopamine neurones form a discrete plexus with melanopsin cells in normal and degenerating retina, Exp Neurol, 205, 26, 10.1016/j.expneurol.2007.01.032 Zhang, 2008, Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons, Proc Natl Acad Sci U S A, 105, 14181, 10.1073/pnas.0803893105 Grunert, 2011, Bipolar input to melanopsin containing ganglion cells in primate retina, Vis Neurosci, 28, 39, 10.1017/S095252381000026X Zhou, 2017, Dopamine signaling and myopia development: what are the key challenges, Prog Retin Eye Res, 61, 60, 10.1016/j.preteyeres.2017.06.003 Feldkaemper, 2013, An updated view on the role of dopamine in myopia, Exp Eye Res, 114, 106, 10.1016/j.exer.2013.02.007 Chakraborty, 2021, Melanopsin modulates refractive development and myopia, Exp Eye Res, 214 Adhikari, 2015, The Post-Illumination Pupil Response (PIPR), Invest Ophthalmol Vis Sci, 56, 3838, 10.1167/iovs.14-16233 Adhikari, 2015, Effect of age and refractive error on the melanopsin mediated post-illumination pupil response (PIPR), Sci Rep, 5, 17610, 10.1038/srep17610 Kankipati, 2010, Post-illumination pupil response in subjects without ocular disease, Invest Ophthalmol Vis Sci, 51, 2764, 10.1167/iovs.09-4717 Feigl, 2014, Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease, Optom Vis Sci, 91, 894, 10.1097/OPX.0000000000000284 Abbott, 2018, The ipRGC-Driven Pupil Response with Light Exposure, Refractive Error, and Sleep, Optom Vis Sci, 95, 323, 10.1097/OPX.0000000000001198 Ostrin, 2017, The ipRGC-driven pupil response with light exposure in children, Invest Ophthalmol Vis Sci, 58, 5093 Chakraborty, 2021, The intrinsically photosensitive retinal ganglion cell (ipRGC) mediated pupil response in young adult humans with refractive errors, J Optom, S1888-4296, 30123 Read, 2010, Human optical axial length and defocus, Invest Ophthalmol Vis Sci, 51, 6262, 10.1167/iovs.10-5457 Moderiano, 2019, Influence of the time of day on axial length and choroidal thickness changes to hyperopic and myopic defocus in human eyes, Exp Eye Res, 182, 125, 10.1016/j.exer.2019.03.019 Wang, 2016, Optical Defocus Rapidly Changes Choroidal Thickness in Schoolchildren, PLoS ONE, 11 Chakraborty, 2020, Understanding myopia: pathogenesis and mechanisms, 65 Zele, 2011, The circadian response of intrinsically photosensitive retinal ganglion cells, PLoS ONE, 6, e17860, 10.1371/journal.pone.0017860 Ghosh, 2011, Measurement of ocular aberrations in downward gaze using a modified clinical aberrometer, Biomed Opt Express, 2, 452, 10.1364/BOE.2.000452 Lucas, 2014, Measuring and using light in the melanopsin age, Trends Neurosci, 37, 1, 10.1016/j.tins.2013.10.004 Chakraborty, 2012, Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes, Exp Eye Res, 103, 47, 10.1016/j.exer.2012.08.002 Chakraborty, 2013, Hyperopic defocus and diurnal changes in human choroid and axial length, Optom Vis Sci, 90, 1187, 10.1097/OPX.0000000000000035 Chiang, 2015, Effect of retinal image defocus on the thickness of the human choroid, Ophthalmic Physiol Opt, 35, 405, 10.1111/opo.12218 Herbst, 2011, Test-retest repeatability of the pupil light response to blue and red light stimuli in normal human eyes using a novel pupillometer, Front Neurol, 2, 10, 10.3389/fneur.2011.00010 Reed, 2002, Use of coefficient of variation in assessing variability of quantitative assays, Clin Diagn Lab Immunol, 9, 1235 Stone, 2011, Image defocus and altered retinal gene expression in chick: clues to the pathogenesis of ametropia, Invest Ophthalmol Vis Sci, 52, 5765, 10.1167/iovs.10-6727 Stone, 2010, Gene profiling in experimental models of eye growth: clues to myopia pathogenesis, Vision Res, 50, 2322, 10.1016/j.visres.2010.03.021 Zhang, 2012, Melanopsin mediates retrograde visual signaling in the retina, PLoS ONE, 7, e42647, 10.1371/journal.pone.0042647 Atkinson, 2013, Functional integrity and modification of retinal dopaminergic neurons in the rd1 mutant mouse: roles of melanopsin and GABA, J Neurophysiol, 109, 1589, 10.1152/jn.00786.2012 Van Hook, 2012, Dopaminergic modulation of ganglion-cell photoreceptors in rat, Eur J Neurosci, 35, 507, 10.1111/j.1460-9568.2011.07975.x Cameron, 2009, Light regulation of retinal dopamine that is independent of melanopsin phototransduction, Eur J Neurosci, 29, 761, 10.1111/j.1460-9568.2009.06631.x Munteanu, 2018, Light-dependent pathways for dopaminergic amacrine cell development and function, Elife, 7, e39866, 10.7554/eLife.39866 Chakraborty, 2011, Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics, Invest Ophthalmol Vis Sci, 52, 5121, 10.1167/iovs.11-7364 Winn, 1994, Factors affecting light-adapted pupil size in normal human subjects, Invest Ophthalmol Vis Sci, 35, 1132 Berkowitz, 2016, Melanopsin Phototransduction Contributes to Light-Evoked Choroidal Expansion and Rod l-Type Calcium Channel Function In Vivo, Invest Ophthalmol Vis Sci, 57, 5314, 10.1167/iovs.16-20186 Li, 2010, Projections from the hypothalamic paraventricular nucleus and the nucleus of the solitary tract to prechoroidal neurons in the superior salivatory nucleus: pathways controlling rodent choroidal blood flow, Brain Res, 1358, 123, 10.1016/j.brainres.2010.08.065 Spitschan, 2018, The method of silent substitution for examining melanopsin contributions to pupil control, Front Neurol, 9, 941, 10.3389/fneur.2018.00941