The effect of ethanolic leaves extract of Hymenodictyon floribundun on inflammatory biomarkers: a data-driven approach

A. G. Usman1, Mubarak Hussaini Ahmad2, Rabi’u Nuhu Danraka2, S.I. Abba3
1Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, Nicosia, 99138, Turkish Republic of Northern Cyprus
2Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
3Department of Civil Engineering, Baze University, Abuja, Nigeria

Tóm tắt

Abstract Background Medicinal plants are used to manage pain and inflammatory disorders in traditional medicine. A scientific investigation could serve as a basis for the determination of molecular mechanisms of antinociceptive and antiinflammatory actions of herbal products. In this work, we used both artificial intelligence (AI) based models inform of adaptive neuro-fuzzy inference system and artificial neural network (ANN) as well as a linear model, namely; stepwise linear regression in modelling the performance of four different inflammatory biomarkers namely; interleukin (1L)-1β, 1L-6, tumour necrosis factor (TNF)-α and prostaglandin E2 (PGE2). This modelling was done using number of abdominal writes, the reaction time of paw licking in mice and paw oedema diameter as the input variables. Results Four different performance indices were employed, which are determination coefficient (DC), root mean squared error (RMSE), mean square error (MSE) and correlation co-efficient (CC). The results have shown the superiority of the AI-based models over the linear model. Conclusions The overall quantitative and visualized comparison of the results showed that adaptive neuro-fuzzy inference system outperformed the ANN and SWLR models in modelling the performance of the four inflammation biomarkers in both the calibration and verification phases.

Từ khóa


Tài liệu tham khảo

Abba SI, Hadi SJ, Sammen SS, Salih SQ, Abdulkadir RA, Pham QB, Yaseen ZM (2020a) Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination. J Hydrol 587(March):124974. https://doi.org/10.1016/j.jhydrol.2020.124974

Abba SI, Usman AG, Is S (2020b) Chemometrics and Intelligent Laboratory Systems Simulation for response surface in the HPLC optimization method development using arti fi cial intelligence models: a data-driven approach. Chemometr Intell Lab Syst. https://doi.org/10.1016/j.chemolab.2020.104007

Abba SI, Usman AG, Işik S (2020c) Simulation for response surface in the HPLC optimization method development using artificial intelligence models: A data-driven approach. Chemom Intell Lab Syst. https://doi.org/10.1016/j.chemolab.2020.104007

Abdullahi HU, Usman AG, Abba SI (2020) Modelling the absorbance of a bioactive compound in HPLC method using artificial neural network and multilinear regression methods. Dutse J Pure Appl Sci DUJOPAS 6(2):362–371

Abdulmalik IA, Sule MI, Musa AM, Yaro AH, Abdullahi MI, Abdulkadir MF, Yusuf H (2011) Evaluation of analgesic and anti-inflammatory effects of ethanol extract of Ficus iteophylla leaves in rodents. Afr J Tradit Complement Altern Med 8(4):462–466. https://doi.org/10.4314/ajtcam.v8i4.19

Abubakar A, Nazifi AB, Odoma S, Shehu S, Danjuma NM (2020) Antinociceptive activity of methanol extract of Chlorophytum alismifolium tubers in murine model of pain: Possible involvement of α2-adrenergic receptor and KATP channels. J Tradit Complement Med 10(1):1–6. https://doi.org/10.1016/j.jtcme.2019.03.005

Adedayo LD, Ojo AO, Awobajo FO, Adeboye BA, Adebisi JA, Bankole TJ, Ayilara GO, Bamidele O, Aitokhuehi NG, Onasanwo SA (2019) Methanol extract of Cola nitida ameliorates inflammation and nociception in experimental animals. Neurobiol Pain 5(August 2018):100027. https://doi.org/10.1016/j.ynpai.2019.100027

Akindele AJ, Ibe IF, Adeyemi OO (2012) Analgesic and antipyretic activities of Drymaria cordata (Linn.) Willd (Caryophyllaceae) extract. Afr J Tradit Complem Altern Med 9(1):25–35. https://doi.org/10.4314/ajtcam.v9i1.4

Azab A, Nassar A, Azab AN (2016) Anti-inflammatory activity of natural products. Molecules 21(10):1–19. https://doi.org/10.3390/molecules21101321

Ballou LR, Botting RM, Goorha S, Zhang J, Vane JR (2000) Nociception in cyclooxygenase isozyme-deficient mice. Proc Natl Acad Sci USA 97(18):10272–10276. https://doi.org/10.1073/pnas.180319297

Barmpalexis P, Karagianni A, Karasavvaides G, Kachrimanis K (2018) Comparison of multi-linear regression, particle swarm optimization artificial neural networks and genetic programming in the development of mini-tablets. Int J Pharm 551(1–2):166–176. https://doi.org/10.1016/j.ijpharm.2018.09.026

Borges CMP, Diakanawma C, De Mendonça DIMD (2010) Iridoids from Hymenodictyon foribundum. J Braz Chem Soc 21(6):1121–1125. https://doi.org/10.1590/S0103-50532010000600023

Chagas-Paula DA, Oliveira TB, Zhang T, Edrada-Ebel R, Da Costa FB (2015) Prediction of anti-inflammatory plants and discovery of their biomarkers by machine learning algorithms and metabolomic studies. Planta Med 81(6):450–458. https://doi.org/10.1055/s-0034-1396206

Choubin B, Khalighi-Sigaroodi S, Malekian A, Kişi Ö (2016) Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals. Hydrol Sci J 61(6):1001–1009. https://doi.org/10.1080/02626667.2014.966721

Committee AT (2000) Artificial neural networks in hydrology. I: preliminary concepts. J Hydrol Eng 5(2):115–123

Elkiran G, Nourani V, Abba SI (2019) Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J Hydrol 577(April):123962. https://doi.org/10.1016/j.jhydrol.2019.123962

England S, Bevan S, Docherty RJ (1996) PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol 495(2):429–440. https://doi.org/10.1113/jphysiol.1996.sp021604

Ezeja M, Omeh Y, Ezeigbo I, Ekechukwu A (2011) Evaluation of the analgesic activity of the methanolic stem bark extract of dialium guineense (wild). Ann Med Health Sci Res 1(1):55–62

Gaya MS, Abba SI, Abdu AM, Tukur AI, Saleh MA, Esmaili P, Wahab NA (2020) Estimation of water quality index using artificial intelligence approaches and multi-linear regression. IAES Int J Artif Intell 9(1):126–134. https://doi.org/10.11591/ijai.v9.i1.pp126-134

Ghali UM, Usman AG, Chellube ZM, Degm MAA, Hoti K, Umar H, Abba SI (2020) Advanced chromatographic technique for performance simulation of anti-Alzheimer agent: an ensemble machine learning approach. SN Appl Sci. https://doi.org/10.1007/s42452-020-03690-2

Ibrahim B, Sowemimo A, Van Rooyen A, Van De Venter M (2012) Antiinflammatory, analgesic and antioxidant activities of Cyathula prostrata (Linn.) Blume (Amaranthaceae). J Ethnopharmacol 141(1):282–289. https://doi.org/10.1016/j.jep.2012.02.032

Kapugi M, Cunningham K (2019) Corticosteroids. Orthop Nurs 38(5):336–339. https://doi.org/10.1097/NOR.0000000000000595

Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C (2006) Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 332(7553):1302–1305. https://doi.org/10.1136/bmj.332.7553.1302

Khademi F, Jamal SM, Deshpande N, Londhe S (2016) Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. Int J Sustain Built Environ 5(2):355–369. https://doi.org/10.1016/j.ijsbe.2016.09.003

Khalid GM, Usman AG (2021) Application of data-intelligence algorithms for modeling the compaction performance of new pharmaceutical excipients

Kim JH, Lee HS (2017) Improvement of early strength of cement mortar containing granulated blast furnace slag using industrial byproducts. Materials. https://doi.org/10.3390/ma10091050

Kim S, Singh VP (2014) Modeling daily soil temperature using data-driven models and spatial distribution. Theoret Appl Climatol 118(3):465–479. https://doi.org/10.1007/s00704-013-1065-z

Kumar Manna Ashis JJ (2009) Anti-inflammatory and analgesic activity of bark extract of pterospermum acerifolium. Int J Curr Pharm Res 1(1):32–37

Lee JK, Han WS, Lee JS, Yoon CN (2017) A novel computational method for biomedical binary data analysis: development of a thyroid disease index using a brute-force search with MLR analysis. Bull Korean Chem Soc 38(12):1392–1397. https://doi.org/10.1002/bkcs.11308

Mohammadhassani M, Nezamabadi-Pour H, Jumaat MZ, Jameel M, Arumugam AMS (2013) Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams. Comput Concr 11(3):237–252. https://doi.org/10.12989/cac.2013.11.3.237

Montgomery SL, Bowers WJ (2012) Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 7(1):42–59. https://doi.org/10.1007/s11481-011-9287-2

Neamul Kabir Zihad SM, Bhowmick N, Uddin SJ, Sifat N, Shamim Rahman M, Rouf R, Islam MT, Dev S, Hazni H, Aziz S, Ali ES, Das AK, Shilpi JA, Nahar L, Sarker SD (2018) Analgesic activity, chemical profiling and computational study on chrysopogon aciculatus. Front Pharmacol 9(8):1–8. https://doi.org/10.3389/fphar.2018.01164

Organisation for Economic Cooperation and Development (OECD) (2001) Guidelines for the testing of chemicals: health effect test no. 423. Acute Oral Toxicity-Acute Toxic Class Method, Paris, France

Ofuegbe SO, Adedapo AA, Adeyemi AA (2014) Anti-inflammatory and analgesic activities of the methanol leaf extract of Phyllanthus amarus in some laboratory animals. J Basic Clin Physiol Pharmacol 25(2):175–180. https://doi.org/10.1515/jbcpp-2013-0084

Okolo CO, Johnson PB, Abdurahman EM, Abdu-Aguye I, Hussaini IM (1995) Analgesic effect of Irvingia gabonensis stem bark extract. J Ethnopharmacol 45(2):125–129. https://doi.org/10.1016/0378-8741(94)01199-A

Okpo SO, Fatokun F, Adeyemi OO (2001) Analgesic and anti-inflammatory activity of Crinum glaucum aqueous extract. J Ethnopharmacol 78(2–3):207–211. https://doi.org/10.1016/S0378-8741(01)00318-X

Pandya PN, Kumar SP, Bhadresha K, Patel CN, Patel SK, Rawal RM, Mankad AU (2020) Identification of promising compounds from curry tree with cyclooxygenase inhibitory potential using a combination of machine learning, molecular docking, dynamics simulations and binding free energy calculations. Mol Simul 46(11):812–822. https://doi.org/10.1080/08927022.2020.1764552

Pham QB, Abba SI, Usman AG, Linh NTT, Gupta V, Malik A, Costache R, Vo ND, Tri DQ (2019) Potential of hybrid data-intelligence algorithms for multi-station modelling of rainfall. Water Resour Manag. https://doi.org/10.1007/s11269-019-02408-3

Rafieian-kopaei M, Shakiba A, Sedighi M, Bahmani M (2017) The analgesic and anti-inflammatory activity of linum usitatissimum in Balb/c mice. J Evid Based Comple Altern Med 22(4):892–896. https://doi.org/10.1177/2156587217717416

Rider P, Carmi Y, Voronov E, Apte RN (2013) Interleukin-1α. Semin Immunol 25(6):430–438. https://doi.org/10.1016/j.smim.2013.10.005

Schneider V, Lévesque LE, Zhang B, Hutchinson T, Brophy JM (2006) Association of selective and conventional nonsteroidal antiinflammatory drugs with acute renal failure: a population-based, nested case-control analysis. Am J Epidemiol 164(9):881–889. https://doi.org/10.1093/aje/kwj331

Selin AGU, Abba ISI (2020) A novel multi- model data-driven ensemble technique for the prediction of retention factor in HPLC method development. Chromatographia. https://doi.org/10.1007/s10337-020-03912-0

Shiri R, Koskimäki J, Häkkinen J, Tammela TLJ, Auvinen A, Hakama M (2006) Effect of nonsteroidal anti-inflammatory drug use on the incidence of erectile dysfunction. J Urol 175(5):1812–1816. https://doi.org/10.1016/S0022-5347(05)01000-1

Usman AG, Işik S, Abba SI (2020a) A novel multi-model data-driven ensemble technique for the prediction of retention factor in HPLC method development. Chromatographia. https://doi.org/10.1007/s10337-020-03912-0

Usman AG, IŞik S, Abba SI, MerİÇlİ F (2020) Artificial intelligence–based models for the qualitative and quantitative prediction of a phytochemical compound using HPLC method. Turkish J Chem 44(5):1339–1351. https://doi.org/10.3906/kim-2003-6

Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rats as an assay for antiinflammatory drugs. Exp Biol Med 3(111):544–547

Xu X, Yang K, Zhang F, Liu W, Wang Y, Yu C, Wang J, Zhang K, Zhang C, Nenadic G, Tao D, Zhou X, Shang H, Chen J (2020) Identification of herbal categories active in pain disorder subtypes by machine learning help reveal novel molecular mechanisms of algesia. Pharmacol Res 156(March):104797. https://doi.org/10.1016/j.phrs.2020.104797

Yemitan OK, Adeyemi OO (2017) Mechanistic assessment of the analgesic, anti-inflammatory and antipyretic actions of Dalbergia saxatilis in animal models. Pharm Biol 55(1):898–905. https://doi.org/10.1080/13880209.2017.1283706

Zelová H, Hošek J (2013) TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm Res 62(7):641–651. https://doi.org/10.1007/s00011-013-0633-0