The effect of early versus delayed surgical debridement on the outcome of open long bone fractures at Bugando Medical Centre, Mwanza, Tanzania
Tóm tắt
Urgent surgical debridement of open long bone fractures is of paramount importance for prevention of subsequent infection. Due to limited information on the timing of this surgical procedure in Mwanza, Tanzania; the present study was conducted to evaluate the effect of early versus delayed surgical debridement on the outcome of open long bone fractures. A prospective cohort study involving 143 patients with open long bone fractures admitted at Bugando Medical Centre (BMC) between December 2014 and April 2015 was conducted. Patients were stratified into two main groups basing on whether they presented at BMC and operated early (within 6 h) or late (more than 6 h). Socio-demographic and clinical information were collected using structured questionnaire. Analysis was done using STATA software version 11. The male to female ratio was 1.6: 1, with most of the patients being in their third decade of life (30.8 %). Road traffic accident (RTA) was the most common cause of fractures (67.8 %). Majority of patients, 91 (63.6 %) had Gustillo-Anderson grade II and the timing of debridement was significantly associated with this grading (p-value = 0.05). Nine (6.3 %) patients developed surgical site infection (SSI) and the median length of hospital stay (LOS) (interquartile range) was 7 (5–10) days, ranging from 3 to 35 days. SSI was found more in the late group compared to the early group [7.5 % (6/80) versus 4.8 % (3/63) respectively, p-value = 0.503)] and LOS was also longer in the late group compared to the early group [7 (6–11.5) days and 6 (5–10) days respectively, p-value = 0.06]. Pseudomonas aeruginosa was the predominant bacteria causing SSI. Open long bone fracture injuries due to RTA are common at BMC. The risk of developing SSI in this setting is low and comparable to many other countries. Despite the fact that there was no statistical significant difference between early versus delayed debrided groups on SSI and LOS stays; the need for prompt surgical intervention in both groups should be an enduring focus to maintain these favorable outcomes.
Tài liệu tham khảo
Court-Brown CM, Rimmer S, Prakash U, McQueen MM. The epidemiology of open long bone fractures. Injury. 1998;29(7):529–34.
Demyttenaere SV, Nansamba C, Nganwa A, Mutto M, Lett R, Razek T. Injury in Kampala, Uganda: 6 years later. Can J Surg. 2009;52(5):E146–50.
Arruda LRP, Silva MAC, Malerba FG, Fernandes MC, Turíbio FM, Matsumoto MH. Open fractures: prospective and epidemiological study. Acta Ortop Bras. 2009;17(6):326–30.
Babhulkar S, Raza HK. Open fractures. Indian J Orthop. 2008;42(4):365–7.
Museru L, Leshabari M, Grob U, Lisokotola L. The pattern of injuries seen in patients in the orthopaedic/trauma wards of Muhimbili Medical Centre. East Cent Afr J Surg. 1998;4(1):15–21.
Mutasingwa DR, Aaro LE. Injury registry in developing country. A study based on patients record from four hospitals in Dare Salaam, Tanzania. Cent Afr J Med. 2001;47(8):203–9.
Chalya PL, Mabula JB, Ngayomela IH, Kanumba ES, Chandika AB, Giiti G, Mawala B, Balumuka DD. Motorcycle injuries as an emerging public health problem in Mwanza City, north-western Tanzania. Tanzan J Health Res. 2010;12(4):214–21.
Chalya PL, Gilyoma JM, Dass RM, McHembe MD, Matasha M, Mabula JB, Mbelenge N, Mahalu W. Trauma admissions to the intensive care unit at a reference hospital in Northwestern Tanzania. Scand J Trauma Resusc Emerg Med. 2011;19:61.
Nwadinigwe CU, Onyemaechi NC. Lethal outcome and time to death in injured hospitalised patients. Orient J Med. 2005;17(1):28–33.
Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am. 1976;58(4):453–8.
Nanchahal J, Nayagam S, Khan U, Moran C, Barrett S, Sanderson F, Pallister I. The Standards for the Management of Open Fractures of the Lower Limb. In: British Association of Plastic, Reconstructive and Aesthetic Surgeons. London: Royal Society of Medicine Press Ltd; 2009.
Griffin M, Malahias M, Khan W, Hindocha S. Update on the management of open lower limb fractures. Open Orthop J. 2012;6:571–7.
Gustilo RB, Merkow RL, Templeman D. The management of open fractures. J Bone Joint Surg Am. 1990;72(2):299–304.
Kindsfater K, Jonassen EA. Osteomyelitis in grade II and III open tibia fractures with late debridement. J Orthop Trauma. 1995;9(2):121–7.
Harley BJ, Beaupre LA, Jones CA, Dulai SK, Weber DW. The effect of time to definitive treatment on the rate of nonunion and infection in open fractures. J Orthop Trauma. 2002;16(7):484–90.
Khatod M, Botte MJ, Hoyt DB, Meyer RS, Smith JM, Akeson WH. Outcomes in open tibia fractures: relationship between delay in treatment and infection. J Trauma. 2003;55(5):949–54.
Pollak AN, Jones AL, Castillo RC, Bosse MJ, MacKenzie EJ. The relationship between time to surgical debridement and incidence of infection after open high-energy lower extremity trauma. J Bone Joint Surg Am. 2010;92(1):7–15.
Kamat AS. Infection rates in open fractures of the tibia: is the 6-hour rule fact or fiction? Adv Orthop. 2011;2011:943495.
Patzakis MJ, Wilkins J. Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res. 1989;243:36–40.
Enninghorst N, McDougall D, Hunt JJ, Balogh ZJ. Open tibia fractures: timely debridement leaves injury severity as the only determinant of poor outcome. J Trauma. 2011;70(2):352–6. discussion 356–357.
NACP. National guidelines for the management of HIV and AIDS. Ministry of Health Of And Social Welfare. The United Republic of Tanzania. 4th ed. National AIDS Control Program. Dar-Es-Salaam. United Republic of Tanzania. 2012.
Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control. 1999;27(2):97–132. quiz 133–134; discussion 196.
Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC. Color atlas and textbook of diagnostic microbiology. 5th ed. Philadelphia, Pa: Lippincott, Williams & Wilkins Publishers; 1997.
CLSI. Perfomance standards for antimicrobial susceptibility testing; twenty first information supplement. vol. CLSI document M100-S21. Wayne: Clinical and Laboratory Standards Institute; 2011.
Thanni LO, Kehinde OA. Trauma at a Nigerian teaching hospital: pattern and docu-mentation of presentation. Afr Health Sci. 2006;6(2):104–7.
Twagirayezu E, Dushimiyimana J, Bonane A. Open fractures I Rwanda: the Kigali experience. East Cent Afr J Surg. 2008;13(1):77–83.
Naique SB, Pearse M, Nanchahal J. Management of severe open tibial fractures: the need for combined orthopaedic and plastic surgical treatment in specialist centres. J Bone Joint Surg Br. 2006;88(3):351–7.
Pollak AN. Timing of debridement of open fractures. J Am Acad Orthop Surg. 2006;14(10 Spec No):S48–51.
Robson MC, Duke WF, Krizek TJ. Rapid bacterial screening in the treatment of civilian wounds. J Surg Res. 1973;14(5):426–30.
Kreder HJ, Armstrong P. A review of open tibia fractures in children. J Pediatr Orthop. 1995;15(4):482–8.
Ashford RU, Mehta JA, Cripps R. Delayed presentation is no barrier to satisfactory outcome in the management of open tibial fractures. Injury. 2004;35(4):411–6.
Bednar DA, Parikh J. Effect of time delay from injury to primary management on the incidence of deep infection after open fractures of the lower extremities caused by blunt trauma in adults. J Orthop Trauma. 1993;7(6):532–5.
Werner CM, Pierpont Y, Pollak AN. The urgency of surgical debridement in the management of open fractures. J Am Acad Orthop Surg. 2008;16(7):369–75.
Carsenti-Etesse H, Doyon F, Desplaces N, Gagey O, Tancrede C, Pradier C, Dunais B, Dellamonica P. Epidemiology of bacterial infection during management of open leg fractures. Eur J Clin Microbiol Infect Dis. 1999;18(5):315–23.
Chalya PL, Mabula JB, Dass RM, Mbelenge N, Ngayomela IH, Chandika AB, Gilyoma JM. Injury characteristics and outcome of road traffic crash victims at Bugando Medical Centre in Northwestern Tanzania. J Trauma Manag Outcomes. 2012;6(1):1.
Spencer J, Smith A, Woods D. The effect of time delay on infection in open long-bone fractures: a 5-year prospective audit from a district general hospital. Ann R Coll Surg Engl. 2004;86(2):108–12.
Merritt K. Factors increasing the risk of infection in patients with open fractures. J Trauma. 1988;28(6):823–7.
Seni J, Najjuka CF, Kateete DP, Makobore P, Joloba ML, Kajumbula H, Kapesa A, Bwanga F. Antimicrobial resistance in hospitalized surgical patients: a silently emerging public health concern in Uganda. BMC Res Notes. 2013;6:298.
Seekamp A, Köntopp H, Schandelmaier P, Krettek C, Tscherne H. Bacterial cultures and bacterial infection in open fractures. Eur J Trauma. 2000;26(3):131–8.
Moremi N, Mushi MF, Fidelis M, Chalya P, Mirambo M, Mshana SE. Predominance of multi-resistant gram-negative bacteria colonizing chronic lower limb ulcers (CLLUs) at Bugando Medical Center. BMC Res Notes. 2014;7:211.