The effect of chemical reaction on thermo-solutal magneto-convection under non-equilibrium temperature conditions
Tóm tắt
The onset of convection in a porous medium saturated by the Oldroyd-type viscoelastic fluid, heated and salted from below, is investigated by incorporating the effects of chemical reactions on boundaries and externally imposed magnetic fields with non-equilibrium temperature conditions. The normal mode technique is used to perform linear stability analysis. The whole study is divided into two parts: (i) the parametric study for stability analysis in the oscillatory case and (ii) the stability analysis with the comparative study between different boundary conditions for controlling parameters for the limited case (in the stationary case, the viscoelastic effect is missing). These boundary surfaces are: (a) realistic bounding surfaces (i.e., rigid–free and free–rigid (R/R, R/F and F/R)) and (b) non-realistic bounding surface, i.e., free–free (F/F). For studying the viscoelastic fluid behavior, i.e., effect of the viscoelastic parameters (i.e., relaxation parameter
$$({\lambda }_{1})$$
) and retardation parameter
$$({\lambda }_{2})$$
, we discussed the oscillatory state on free–free boundary surfaces. To analyze the consequences of different controlling parameters, numerical computation has been performed, and the results are illustrated in graphical form. For oscillatory convection, the minimum of the critical Rayleigh number drops as the relaxation parameter (
$${\lambda }_{1})$$
, solute Rayleigh number (RaS) and Lewis number (Le) increase while it increases as the retardation parameter (
$${\lambda }_{2})$$
, Chadrashekhar number (Q) and interphase heat transfer coefficient (
$$\tau )$$
increase. In comparative study for stationary convection, the graphs demonstrate that while the critical Rayleigh number reduces as the value of Damk
$$\ddot{o}$$
hler number (
$$\chi )$$
grows, it increases along with increase in Chandrashekhar number (Q), interphase heat transfer coefficient (
$$\tau )$$
and Lewis number (Le).
Từ khóa
Tài liệu tham khảo
Kim, M.C., Lee, S.B., Kim, S., Chung, B.J.: Thermal instability of viscoelastic fluids in porous media. Int. J. Heat Mass Transf. 46, 5065–5072 (2003)
Yoon, D., Kim, M.C., Choi, C.K.: The onset of oscillatory convection in a horizontal porous layer saturated with viscoelastic liquid. Transp. Porous Media 55, 275–284 (2004)
Rudraiah, N., Kaloni, P.N., Radhadevi, P.V.: Oscillatory convection in a viscoelastic fluid through a porous layer heated from below. Rheol. Acta 28, 48–53 (1989)
Kang, J., Fu, C., Tan, W.: Thermal convective instability of viscoelastic fluids in a rotating porous layer heated from below. J. Non Newtonian Fluid Mech. 166, 93–101 (2011)
Wang, S., Tan, W.: The onset of Darcy–Brinkman thermosolutal convection in a horizontal porous media. Phys. Lett. 373(A). pp. 776–780 (2009).
Malashetty, M.S., Biradar, B.S.: The onset of double diffusive reaction-convection in an anisotropic porous layer. Phys. Fluids 23, 064102–064112 (2011)
Chamkha. A.J.: Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. Int. J. Eng. Sci. 42(2). pp. 217–230 (2004).
Ahmed, S., Zueco, J., López-González, L.M.: Effects of chemical reaction, heat and mass transfer and viscous dissipation over a MHD flow in a vertical porous wall using perturbation method. Int. J. Heat and Mass Transfer. 104, 409–418 (2017)
Rees, D.A.S., Pop, I.: Vertical free convection Boundary-layer flow in a porous medium using a thermal nonequilibrium model. J. Porous Media. 3(1), 31–44 (2000)
Banu, N., Rees, D.A.S.: Onset of Darcy-Bernard convection using a thermal non- equilibrium model. Int. J. Heat and Mass Transf. 45, 2221–2228 (2002)
Gandomkar, A., Gray, K.E.: Local thermal non-equilibrium in porous media with heat conduction. Int. J. Heat Mass Transf. 124, 1212–1216 (2018)
Malashetty, M.S., Shivkumara, I.S.: The onset of convection in a couple stress fluid saturated porous layer using a thermal non-equilibrium model. Phys. Lett. A 373, 781–790 (2009)
Nield, D.A., Bejan, A.: Convection in porous media, 5th edn. Springer-Verlag, New York (2017)
Dash, G.C., Rath, P.K., Patra, A.K.: Unsteady free convective MHD flow through porous media in a rotating system with fluctuating temperature and concentration. Modell. Controll. B 78(3), 1–16 (2009)
Kumar, B.R., Sivaraj, R., Benazir, A.J.: Chemically reacting MHD free convective flow over a vertical cone with a variable electric conductivity. Int. J. Pure Appl. Math. 101, 821–828 (2015)
Jenifer, A.S., Ponnaiah, S., Natarajan, E.: Unsteady magnetohydrodynamic mixed convection flow over a rotating sphere with sinusoidal mass transfer. J. Heat Mass Transf. Res. 9, 129–140 (2022)
Wang, P., Qu, Y., Meng, X., Tu, J ., Zheng, W., Lin Hu, L., Chen, Q.: A strong magnetic field alters the activity and selectivity of the CO2RR by restraining C–C coupling. Magnetochemistry 9, 65 (2023). https://doi.org/10.3390/magnetochemistry9030065
Bejawada, S.G., Reddy, Y.D., Jamshed, W., Nisar, K.S., Alharbi, A.N., Chouikh, R.: Radiation effect on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a Forchheimer porous medium. Alex. Eng. J. 6, 8207–8220 (2022)
Finlayson, B.A.: The Method of Weighted Residuals and Variational Principals. Academic Press, London (2006)
Horton, C.W., Rogers, F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–370 (1945)
Lapwood, E.R.: Convection of a fluid in a porous medium. Math. Proc. Cambridge. 44, 508–521 (1948)
Pritchard, D., Richardson, C.N.: The effect of temperature-dependent solubility on the onset of thermosolutal convection in a horizontal porous layer. J. Fluid Mech. 571, 59–95 (2007)
Bharty, M., Srivastava, A.K., Mahato, H.: Stability of Magneto Double Diffusive Convection in Couple Stress Liquid with Chemical Reaction. J. Heat Mass Transf. Res. 10(2), 171–190 (2023). https://doi.org/10.22075/jhmtr.2023.30246.1432