Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tác động của một chất postbiotic được sản xuất từ Lactobacilli không sống ổn định đến sức khỏe, hiệu suất tăng trưởng, miễn dịch và tình trạng ruột của gà thịt bị nhiễm colisepticaemic
Tóm tắt
Nghiên cứu này được thiết kế để đánh giá hiệu quả của một hợp chất postbiotic được sản xuất từ Lactobacilli không sống ổn định đối với sức khỏe, hiệu suất tăng trưởng, miễn dịch và tình trạng ruột trước thử thách với Escherichia coli (E. coli) ở gà thịt. Tổng cộng 400 gà thịt một ngày tuổi được chia thành 4 nhóm bằng nhau (1–4) gồm 100 con; mỗi nhóm được phân bổ vào 2 lần lặp bằng nhau (50 con mỗi nhóm). Gà trong nhóm 1 được cho dùng dạng khô của hợp chất với liều lượng là 1 kg và 0.5 kg/tấn thức ăn cho khẩu phần gà vịt và gà lớn, và các khẩu phần hoàn thiện lần lượt. Gà trong nhóm 2 được cung cấp dạng lỏng của hợp chất với liều 4 mL/L nước uống trong 3 ngày đầu đời và một ngày trước và sau mỗi lần tiêm chủng. Các chế độ điều trị thức ăn và nước được áp dụng cho gà trong nhóm 3. Nhóm 4 được giữ lại không điều trị. Mỗi con gà trong nhóm 1, 2, 3 và 4 đều phải trải qua thử thách với E. coli (O78) khi được 1 tuần tuổi. Tất cả các nhóm được theo dõi cho đến khi 5 tuần tuổi. Phân tích thống kê bao gồm ANOVA một chiều và các phương pháp khác được mô tả với sự khác biệt có ý nghĩa tại P ≤ 0.05. Kết quả cho thấy rằng các chế độ điều trị thức ăn và nước với hợp chất postbiotic đã gây ra sự cải thiện đáng kể hơn (P ≤ 0.05) về tình trạng bệnh, tăng cường hiệu suất tăng trưởng, cải thiện phản ứng miễn dịch, cải thiện tỷ lệ bursa Fabricius/cân nặng cơ thể, và giảm số lượng vi khuẩn coliform trong ruột ở những con gà bị thách thức so với những con gà không được điều trị. Kết luận, hợp chất postbiotic dưới dạng khô và/hoặc dạng lỏng được khuyến nghị để cải thiện sức khỏe, hiệu suất và miễn dịch của gà thịt bị nhiễm colisepticaemic.
Từ khóa
#postbiotic #Lactobacilli #gà thịt #miễn dịch #hiệu suất tăng trưởng #E. coli #colisepticaemicTài liệu tham khảo
Abalaka, S., Sani, N., Idoko, I., Tenuche, O., Oyelowo, F., Ejeh, S. and Enem, S., 2017. Pathological changes associated with an outbreak of colibacillosis in a commercial broiler flock. Sokoto Journal of Veterinary Sciences, 15, 95–102. https://doi.org/10.4314/sokjvs.v15i3.14
Abd El-Ghany, W.A., 2020. Paraprobiotics and postbiotics: Contemporary and promising natural antibiotics alternatives and their applications in the poultry field. Open Veterinary Journal, 10, 323–330. https://doi.org/10.4314/ovj.v10i3.11
Adams, C.A., 2010. The probiotic paradox: Live and dead cells are biological response modifiers. Nutrition Research Reviews, 23, 37–46. https://doi.org/10.1017/S0954422410000090
Aguilar-Toalá, J., Garcia-Varela, R., Garcia, H., Mata-Haro, V., González-Córdova, A., Vallejo-Cordoba, B. and Hernández-Mendoza, A., 2018. Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105–114. https://doi.org/10.1016/j.tifs.2018.03.009
Ali, A.I., Abd El-Mawgoud, A.M., Dahshan, A.A., El-Sawah, A.A. and Nasef, S., 2019. Escherichia coli in broiler chickens in Egypt, its virulence traits and vaccination as an intervention strategy. Novel Research in Microbiology Journal 3, 415–427. https://doi.org/10.21608/NRMJ.2019.44950
Bancroft, J.D. and Gamble, M., 2007. Theory and practice of histopathological techniques. 5th Ed; Churchill Livingstone, London, UK, pp: 125-138.
Belanger, L., Garenaux, A., Harel, J., Boulianne, M., Nadeau, E. and Dozois, C.M., 2011. Escherichia coli from animal reservoirs as a potential source of human extra intestinal pathogenic E. coli. FEMS Immunology & Medical Microbiology, 62, 1–10. https://doi.org/10.1111/j.1574-695X.2011.00797.x
Blomberg, L., Henriksson, A. and Conway, P.L., 1993. Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Applied and Environmental Microbiology, 59, 34–39. https://doi.org/10.1128/aem.59.1.34-39.1993
Breijyeh, Z., Jubeh, B. and Karaman, R., 2020. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 25, 1340. https://doi.org/10.3390/molecules25061340
Caldwell, J.M., 2016. Abiotic, their fermentates have advantages for host. Feedstuffs, 88, 1–3.
Chen X, Ishfaq M, Wang J. Effects of Lactobacillus salivarius supplementation on the growth performance, liver function, meat quality, immune responses and Salmonella Pullorum infection resistance of broilers challenged with Aflatoxin B1. Poultry Science, 101, 101651. https://doi.org/10.1016/j.psj.2021.101651
Choe, D.W., Loh, T.C., Foo, H.L., Hair-Bejo, M. and Awis, Q.S., 2012. Egg production, faecal pH and microbial population, small intestine morphology, and plasma and yolk cholesterol in laying hens given liquid metabolites produced by Lactobacillus plantarum strains. British Poultry Science, 53, 106–115. https://doi.org/10.1080/00071668.2012.659653
Choe, D.W., Foo, H.L., Loh, T.C., Hair-Bejo, M. and Awis, Q.S., 2013. Inhibitory property of metabolite combinations produced from Lactobacillus plantarum strains. Pertanika Journal of Tropical Agricultural Science, 36, 79–88. http://psasir.upm.edu.my/id/eprint/21388
Cicenia, A., Santangelo, F., Gambardella, L., Pallotta, L., Iebba, V., Scirocco, A., Marignani, M., Tellan, G., Carabotti, M., Corazziari, E.S., Schippa, S. and Severi, C., 2016. Protective role of postbiotic mediators secreted by Lactobacillus Rhamnosus GG versus lipopolysaccharide-induced damage in human colonic smooth muscle cells. Journal of Clinical Gastroenterology, 50, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13–15, 2015: S140– S144. https://doi.org/10.1097/mcg.0000000000000681
Dunne, C., Murphy, L., Flynn, S., O’Mahony, L., O’Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E.M., O’Sullivan, G.C., Shanahan, F. and Collins, J.K., 1999. Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. International Journal of General and Molecular Microbiology, 76, 279–292.
Ebrahimi-Nik, H., Bassami, M.R., Mohri, M., Rad, M. and Khan, M.I., 2018. Bacterial ghost of avian pathogenic E. coli (APEC) serotype O78:K80 as a homologous vaccine against avian colibacillosis. PLoS One, 13, e0194888. https://doi.org/10.1371/journal.pone.0194888
Fancher, C.A., Zhang, L., Kiess, A.S., Adhikari, P.A., Dinh, T.T.N. and Sukumaran, A.T., 2020. Avian pathogenic Escherichia coli and Clostridium perfringens: Challenges in no antibiotics ever broiler production and potential solutions. Microorganisms, 8, 1533. https://doi.org/10.3390/microorganisms8101533
Fernandez, A., Lara, C., Loste, A. and Marca, M.C., 2002. Efficacy of calcium fosfomycin for the treatment of experimental infection of broiler chickens with Escherichia coli O78:K80. Veterinary Research Communications, 26, 427–436. https://doi.org/10.1023/A:1020582207129
Hegazy, M., Abd-El Samie, L.K. and El Sayed, E.M., 2010. The immunosuppresive effect of E. coli in chickens vaccinated with Infectious Bronchitis (IB) or Infectious Bursal Disease (IBD). Journal of the American Science, 6, 762–767.
Huang, L., Luo, L., Zhang, Y., Wang, Z. and Xia. Z., 2019. Effects of the dietary probiotic, Enterococcus faecium NCIMB11181, on the intestinal barrier and system immune status in Escherichia coli O78-challenged broiler chickens. Probiotics and Antimicrobial Proteins, 11, 946–956. https://doi.org/10.1007/s12602-018-9434-7
Humam, A.M., Loh, T.C., Foo, H.L., Samsudin, A.A., Mustapha, N.M., Zulkifli, I. and Izuddin, W.I., 2019. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals (Basel) 9, 644. https://doi.org/10.3390/ani9090644
Jahromi, M.F., Altaher, Y.W., Shokryazdan, P., Ebrahimi, R., Ebrahimi, M., Idrus, Z., Tufarelli, V. and Liang, J.B., 2016. Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. International Journal of Biometeorology, 60, 1099–1110. https://doi.org/10.1007/s00484-015-1103-x
Johnson, C.N., Kogut, M.H., Genovese, K., He, H., Kazemi, S. and Arsenault, R.J., 2019. Administration of a postbiotic causes immunomodulatory responses in broiler gut and reduces disease pathogenesis following challenge. Microorganisms, 7, 268. https://doi.org/10.3390/2Fmicroorganisms7080268
Kalavathy, R., Abdullah, N., Jalaludin, S. and Ho, Y.W., 2003. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. British Poultry Science, 44, 139–144. https://doi.org/10.1080/0007166031000085445
Kant, R., deVos, W.M., Palva, A. and Satokari, R., 2014. Imuunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. Journal of Medical Microbiology, 63, 293–308. https://doi.org/10.1099/jmm.0.064220-0
Kareem, K.Y., Ling, F.H., Chwen, L.T., Foong, O.M. and Asmara, S.A., 2014. Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut Pathogen, 6, 23. https://doi.org/10.1186/1757-4749-6-23
Kareem, K.Y., Loh, T.C., Foo, H.L., Akit, H. and Samsudin, A.A., 2016. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers. BMC Veterinary Research, 12, 163. https://doi.org/10.1186/s12917-016-0790-9
Kareem, K.Y., Loh, T.C., Foo, H.L., Asmara, S.A. and Akit, H., 2017. Influence of postbiotic RG14 and inulin combination on cecal microbiota, organic acid concentration, and cytokine expression in broiler chickens. Poultry Science, 96, 966–975. https://doi.org/10.3382/ps/pew362
Klemashevich, C., Wu, C., Howsmon, D., Alaniz, R.C., Lee, K., Jayaraman, A., 2014. Rational identification of diet-derived postbiotics for improving intestinal microbiota function. Current Opinion in Biotechnology, 26, 85– 90. https://doi.org/10.1016/j.copbio.2013.10.006
Koutsianos, D., Athanasiou, L., Mossialos, D. and Koutoulis, K., 2021. Colibacillosis in poultry: A disease overview and the new perspectives for its control and prevention. Journal of the Hellenic Veterinary Medical Society, 71, 2425–2436. https://doi.org/10.12681/jhvms.25915
Loh, T.C., Thanh, N.T., Foo, H.L., Hair-Bejo, M. and Azhar, B.K., 2010. Feeding of different levels of metabolite combinations produced by Lactobacillus plantarum on growth performance, fecal microflora, volatile fatty acids and villi height in broilers. Animal Science Journal, 81, 205–214. https://doi.org/10.1111/j.1740-0929.2009.00701.x
Loh, T.C., Choe, D.W., Foo, H.L., Sazili, A.Q. and Bejo, M.H., 2014. Effects of feeding different postbiotic metabolite combinations produced by Lactobacillus plantarum strains on egg quality and production performance, faecal parameters and plasma cholesterol in laying hens. BMC Veterinary Research, 10, 149. https://doi.org/10.1186/1746-6148-10-149
Lutful Kabir, S.M., 2010. Avian colibacillosis and salmonellosis: A closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. International Journal of Environmental Research and Public Health, 7, 89–114. https://doi.org/10.3390/2Fijerph7010089
Ma, Z., Lee, S. and Jeong, K.C., 2019. Mitigating antibiotic resistance at the livestock-environment interface: A review. Journal of Microbiology and Biotechnology, 29, 1683–1692. https://doi.org/10.4014/jmb.1909.09030
Manyi-Loh, C., Mamphweli, S., Meyer, E. and Okoh, A., 2018. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules, 23, 795. https://doi.org/10.3390/molecules23040795
McGruder, E.D. and Moore, G.M., 1998. Use of lipopolysaccharide (LPS) as a positive control for the evaluation of immunopotentiating drug candidates in experimental avian colibacillosis models. Research in Veterinary Science, 66, 33–37.
Mohamed, H.M.A. and Younis, W., 2018. Trials on the role of prebiotics and probiotics in colonization and immune response of broiler chickens challenged with Escherichia coli K88. Alexandria Journal of Veterinary Sciences, 58, 48–56. https://doi.org/10.5455/ajvs.297887
Nakamura, K., Yuasa, N., Abe, H. and Narita, M., 1990. Effect of Infectious bursal disease virus on infections produced by Escherichia coli of high and low virulence in chickens. Avian Pathology, 19, 713–721. https://doi.org/10.1080/03079459008418726
National Research Council, (NRC) 1994. Nutrient Requirement of Poultry. 9th revised edition. National Academic Press, Washington, DC, USA.
OIE. 2002. Office International Des Epizooties. Manual of Standards for Diagnostic Tests and Vaccines. 4th Eds., Paris, France.
Pollman, D.S., Kennedy, G.A., Koch, B.A. and Allee, G.L., 1982. Influence of nonviable Lactobacillus fermentation product in artificially reared pigs challenged with E. coli. Conference Paper, Swine Day, Manhattan, Kan., November, 11, 1982. Kansas State University, pp. 86–91.
Radwan, I.A., Abd El-Halim, M.W. and Abed, A.H., 2021. Molecular characterization of antimicrobial resistant Escherichia coli isolated from broiler chickens. Journal of Veterinary Medical Research, 27, 128–142. https://doi.org/10.21608/JVMR.2020.31870.1009
Rosyidah, M., Loh, T., Foo, H., Cheng, X. and Bejo, M., 2011. Effect of feeding metabolites and acidifier on growth performance, faecal characteristics and microflora in broiler chickens. Journal of Animal and Veterinary Advances, 10, 2758–2764. https://doi.org/10.3923/javaa.2011.2758.2764
Roth, N., Käsbohrer, A., Mayrhofer, S., Zitz, U., Hofacre, C. and Domig, K.J., 2019. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultry Science, 98, 1791–1804. https://doi.org/10.3382/2Fps/2Fpey539
Sainsbury, D., 1984. Systems of management. Ch.9 P.102. In Poultry Health and Management. 2nd Ed. By Sainsbury. Granada Publishing LTD. 8 Grafton Street, London WIX3 LA.
Seal, B.S., Lillehoj, H.S., Donovan, D.M. and Gay, C.G., 2013. Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Anim. Health Research Review, 14, 78–87. https://doi.org/10.1017/s1466252313000030
Sharma, P., Tomar, S.K., Goswami, P., Sangwan, V. and Singh, R. 2014. Antibiotic resistance among commercially available probiotics. Food Research International, 57, 176–195. https://doi.org/10.1016/j.foodres.2014.01.025
Shazali, N., Foo, H.L., Loh, T.C., Choe, D.W. and Rahim, R.A., 2014. Prevalence of antibiotic resistance in lactic acid bacteria isolated from the faeces of broiler chicken in Malaysia. Gut Pathogens, 6, 1. https://doi.org/10.1186/1757-4749-6-1
Snedecor, G.W. and Cochran, W.G., 1980. Statistical Methods. 7th Ed., Iowa State College Press, Ames, IA, 39–63.
Snyder, D.B., Marquardt, W.W., Mallinson, E.T., Savage, P.K. and Allen, D.C., 1984. Rapid serological profiling by enzyme-linked immunosorbent assay. III. Simultaneous measurements of antibody titers to infectious bronchitis, infectious bursal disease, and Newcastle disease viruses in a single serum dilution. Avian Diseases, 28, 12–24. https://doi.org/10.2307/1590125
Thanh, N.T., Loh, T.C., Foo, H.L., Hair-Bejo, M. and Azhar, B.K., 2009. Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. British Poultry Science, 50, 298–306. https://doi.org/10.1080/00071660902873947
Thu, T.V., Loh, T.C., Foo, H.L., Yaakub, H. and Bejo, M.H., 2011. Effects of liquid metabolite combinations produced by Lactobacillus plantarum on growth performance, faeces characteristics, intestinal morphology and diarrhoea incidence in postweaning piglets. Tropical Animal Health and Production, 43, 69–75. https://doi.org/10.1007/2Fs11250-010-9655-6
Tiptiri-Kourpeti, A., Spyridopoulou, K., Santarmaki, V., Aindelis, G., Tompoulidou, E., Lamprianidou, E.E., Saxami, G., Ypsilantis, P., Lampri, E.S., Simopoulos, C., Kotsianidis, I., Galanis, A., Kourkoutas, Y., Dimitrellou, D. and Chlichlia, K., 2016. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS One, 11, e0147960. https://doi.org/10.1371/journal.pone.0147960
Tsilingiri, K., Barbosa, T., Penna, G., Caprioli, F., Sonzogni, A., Viale, G. and Rescigno, M., 2012. Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut, 61, 1007–1015. https://doi.org/10.1136/gutjnl-2011-300971
Valiakos, G. and Kapna, I. 2021. Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational Perspective. A systematic review. Veterinary Sciences, 8, 265. https://doi.org/10.3390/vetsci8110265
Van Thu, T., Foo, H.L., Loh, T.C. and Bejo, M.H., 2011. Inhibitory activity and organic acid concentrations of metabolite combinations produced by various strains of Lactobacillus plantarum. African Journal of Biotechnology, 10, 1359–1363.
Veterinary Feed Directive. 2019. Available online: https://www.federalregister.gov/documents/2015/06/03/2015-13393/veterinary-feed-directive (accessed on 12 June 2019).
Vidal, K., Donnet-Hughes, A. and Granato, D., 2002. Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and Gram-negative bacteria. Infection and Immunity, 70, 2057–2064. https://doi.org/10.1128/iai.70.4.2057-2064.2002
