The effect of Trichoderma spp. isolates on some morphological traits of canola inoculated with Sclerotinia sclerotiorum and evaluation of their efficacy in biological control of pathogen

Mohammad Reza Safari Motlagh1, Mostafa Abolghasemi2
1Rasht Branch, Islamic Azad University, Department of Plant Protection, Faculty of Agriculture, Rasht, Iran
2Deylaman Institute for High Education, Department of Plant Protection, Lahijan, Iran

Tài liệu tham khảo

Abdollahzadeh, 2006, Investigation of biocontrol of crown and root rot of sunflower (Sclerotinia sclerotiorum) by Trichoderma species in laboratory condition, J. Agric. Sci., 12, 43 Alavi Rad, S., 2016. Biological control of Sclerotinia sclerotiorum, the causal agent of tobacco collar rot by antagonistic fungi in Guilan province. Master's thesis. Department of Plant Pathology, Daylaman University of Lahijan. Iran. Almomani, 2013, Detection, identification and morphological characteristic of Macrophomina phaseolina: the charcoal rot disease pathogens isolated from infected plants in Northern Jordan, Arch. Phytopathol. Plant Prot., 46, 1005, 10.1080/03235408.2012.756174 Barari, 2016, Antagonistic effects of Trichoderma spp. in the control of Sclerotinia sclerotiorum and in comparison with chemical fungicides, J Plant Dis., 4, 13 Benigni, 2010, Chemical and biological control of S. sclerotiorum in witloof chicory culture, Pest Manag. Sci., 66, 1332, 10.1002/ps.2019 Bissett, 1984, A revision of the genus Trichoderma. I. Section Longibrachiatum sec. nov, Can. J. Bot., 62, 924, 10.1139/b84-131 Bradley, 2006, Response of canola cultivars to Sclerotinia sclerotiorum in controlled and field environments, Plant Dis., 90, 215, 10.1094/PD-90-0215 Contreras-Cornejo, H.A., Macías-Rodríguez, L., Cortés-Penagos, C., López-Bucio, J., 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149, 1579-1592. da Silva, 2019, Biological control of white mold (S. sclerotiorum) in lettuce using Brazilian Trichoderma spp.strains, Aust. J. Crop Sci., 13, 803, 10.21475/ajcs.19.13.06.p1214 Dennis, 1971, Antagonistic properties of species groups of Trichoderma III, hyphal interaction, Trans. Br. Mycol. Soc., 57, 363, 10.1016/S0007-1536(71)80050-5 Elad, 1983, Improved selective media for isolation of Trichoderma spp. or Fusarium spp, Phytoparasitica., 11, 55, 10.1007/BF02980712 FAO., 2013. Rapeseed oilseed, world supply and distribution. Foreign Agricultural Service, Official USDA. http:/en.wikipedia.org/wiki/FAO. Gams, W., Bissett, J., 1998. Morphology and identification of Trichoderma, in: Kubicek, C.P., Harman, G.E. (Eds.), Trichoderma and Gliocladium. Taxonomy and Genetics. Taylor and Francis Ltd., London. Basic Biology, 1. pp. 3-34. Garcia, 2012, Evaluation of the resistance of soybean to Sclerotinia sclerotiorum in different phenological stages and periods of exposure to the inoculum, Trop. Plant Pathol., 37, 196, 10.1590/S1982-56762012000300006 Guareschi, 2012, Employment of Trichoderma spp. in the control of Sclerotinia sclerotiorum and in the promotion of vegetative growth in the sunflower and soybean crops, Global Sci. Tech., 5, 1 Guilger-Casagrande, 2019, Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of S. sclerotiorum, Sci. Rep., 9 Haddad, 2017, Selection of Trichoderma spp. strains for control of Sclerotinia sclerotiorum in soybean, Pesqui Agropecu. Bras., 52, 1140, 10.1590/s0100-204x2017001200002 Harman, 2004, Trichoderma species- opportunistic, avirulent plant symbionts, Nat. Rev. Microbiol., 2, 43, 10.1038/nrmicro797 Howell, 2003, Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts, Plant Dis., 87, 4, 10.1094/PDIS.2003.87.1.4 Hoyos-Carvajal, 2009, Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions, Fungal Genet. Biol., 46, 615, 10.1016/j.fgb.2009.04.006 Huang, 2000, Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum, Biol. Control., 18, 270, 10.1006/bcon.2000.0829 Josep, 2001 Kamal, 2015, Biological control of sclerotinia stem rot of canola using antagonistic bacteria, Plant Pathol., 64, 1375, 10.1111/ppa.12369 Khaledi, 2016, Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina, J. Plant Prot. Res., 56, 21, 10.1515/jppr-2016-0004 Kohn, 1979, Delimitation of economically important plant pathogenic Sclerotinia species, Phytopathology., 69, 881, 10.1094/Phyto-69-881 Kubicek, 2008, Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity, J. Zhejiang Univ. Sci. B., 9, 753, 10.1631/jzus.B0860015 Kullnig, 2000, Molecular identification of Trichoderma species from Russia, Siberia and the Himalaya, Mycol. Res., 104, 1117, 10.1017/S0953756200002604 Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547-1549. Li, 2003, Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum, Biol. Control., 28, 11, 10.1016/S1049-9644(03)00050-1 Li, 2006, Biological control of Sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans, Eur. J. Plant Pathol., 114, 345, 10.1007/s10658-005-2232-6 Liu, Y., Zheng, Z., Gong, H., Liu, M., Guo, S., Li, G., Wang, X., Kaplan, D.L., 2017. DNA preservation in silk. Biomater. Sci. 5(7), 1279-1292. Lorito, 1994, Purification, characterization and synergistic activity of a gulacan 1, 3-beta glucosidase and an N acetylglucosaminidase from Trichoderma harzianum, Phytopathology., 84, 398, 10.1094/Phyto-84-398 Mordue, 1976 Matroudi, 2009, Antagonistic effects of three species of Trichoderma sp. on Sclerotinia sclerotiorum, the causal agent of canola stem rot, Egypt. J. Biol., 11, 37 Merat, 2005, Study on antagonistic effect of Trichoderma spp. from Guilan province (Iran) on Sclerotinia sclerotiorum, causal agent of bud and twig die-back of mulberry trees Ojaghian, 2009, Biological control of Sclerotinia sclerotiorum, the causal agent of potato white mold by different Trichoderma spp. and Coniothyrium minitans, J. Sustain Agric. Sci., 2, 107 Ousley, 1993, Effect of Trichoderma on plant growth: a balance between inhibition and growth promotion, Microb. Ecol., 26, 277, 10.1007/BF00176959 Phillips, 1990, Fungi associated with sclerotia of Sclerotinia sclerotiorum in South Africa and their effects on the pathogen, Rev. Plant Pathol., 69, 17 Radwan, 2006, Biological control of Sclerotium rolfsii by using indigenous Trichoderma spp. isolates from Palestine, Hebron Univ. Res. J., 2, 27 Riberio, 2018, Biological and chemical control of S. sclerotiorum using Stachybotrys levispora and its secondary metabolite griseofulvin, J. Agric. Food Chem., 66, 7627, 10.1021/acs.jafc.7b04197 Samuels, G.J., Chaverri, P., Farr, D.F., McCray, E.B.,2010. Trichoderma,Online, Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/taxadescriptions/keys/TrichodermaIndex.cfm. Sanger, 1975, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase, J. Mol. Biol., 94, 441, 10.1016/0022-2836(75)90213-2 Sivakumar, 2000, Antagonistic effect of Trichoderma harzianum on postharvest pathogens of Rambutan (Nephelium lappaceum), Phytoparasitica., 28, 240, 10.1007/BF02981802 Weller, 1988, Biological control of soil-borne plant pathogens in the rhizosphere with bacteria, Annu. Rev. Phytopathol., 26, 379, 10.1146/annurev.py.26.090188.002115 Zeppa, 1991, Variability in the production of volatile metabolites by Trichoderma viride, Rev. Plant Pathol., 70, 604