The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alekseev, V.M., The Generalized Spatial Problem of Two Fixed Centers: The Classification of Motions, Bull. Inst. Teoret. Astr., 1965, vol. 10, no. 4(117), pp. 241–271 (Russian).
Bagrets, A. A. and Bagrets, D. A., Nonintegrability of Hamiltonian Systems in Vortex Dynamics, Regul. Chaotic Dyn., 1997, vol. 2, no. 1, pp. 36–43; no. 2, pp. 58–65 (Russian).
Bagrets, A. A. and Bagrets, D. A., Nonintegrability of Two Problems in Vortex Dynamics, Chaos, 1997, vol. 7, no 3, pp. 368–375.
Batchelor, G. K., An Introduction to Fluid Dynamics, 2nd ed., Cambridge: Cambridge Univ. Press, 1999.
Blackmore, D., Brons, M., and Goullet, A., A Coaxial Vortex Ring Model for Vortex Breakdown, Phys. D, 2008, vol. 237, pp. 2817–2844.
Blackmore, D., Champanerkar, J., and Wang, Ch., A Generalized Poincaré-Birkhoff Theorem with Applications to Coaxial Vortex Ring Motion, Discrete Contin. Dyn. Syst. Ser. B, 2005, vol. 5, no. 1, pp. 15–33.
Blackmore, D. and Knio, O., Transition from Quasiperiodicity to Chaos for Three Coaxial Vortex Rings, ZAMM Z. Angew. Math. Mech., 2000, vol. 80, pp. 173–176.
Blackmore, D. and Knio, O., KAM Theory Analysis of the Dynamics of Three Coaxial Vortex Rings, Phys. D, 2000, vol. 140, pp. 321–348.
Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132 [Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318].
Bolsinov, A.V. and Fomenko, A.T., Integrable Hamiltonian Systems: Geometry, Topology and Classification, Boca Raton, FL: CRC Press, 2004.
Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Absolute and Relative Choreographies in the Problem of the Motion of Point Vortices in a Plane, Dokl. Ross. Akad. Nauk, 2005, vol. 400, no. 4, pp. 457–462 [Dokl. Math., 2005, vol. 71, no. 1, pp. 139–144].
Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Reduction and Chaotic Behavior of Point Vortices on a Plane and a Sphere, Discrete Contin. Dyn. Syst., 2005, suppl., pp. 100–109.
Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).
Borisov, A.V. and Mamaev, I. S., Isomorphisms of Geodesic Flows on Quadrics, Regul. Chaotic Dyn., 2009, vol. 14, nos. 4–5, pp. 455–465.
Boyarintsev, V. I., Levchenko, E. S., and Savin, A. S., Motion of Two Vortex Rings, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1985, no. 5, pp. 176–177 [Fluid Dynam., 1985, vol. 20, no. 5, pp. 818–819].
Brutyan, M.A. and Krapivskii, P. L., The Motion of a System of Vortex Rings in an Incompressible Fluid, Prikl. Mat. Mekh., 1984, vol. 48, no. 3, pp. 503–506 [J. Appl. Math. Mech., 1984, vol. 48, no. 3, pp. 365–368].
Chaplygin S.A. Comments on Helmholtz’s Life and Works, in: H. Helmholtz, Dva issledovaniya po gidrodinamike (Two Studies in Hydrodynamics). Moscow, Palas, 1902, pp. 69–108 (Russian); reprinted edition: Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2002, pp. 57–73.
Chenciner, A. and Montgomery, R., A Remarkable Periodic Solution of the Three Body Problem in the Case of Equal Masses, Ann. of Math. (2), 2000, vol. 152, pp. 881–901.
Cheremnykh, O.K., On the Motion of Vortex Rings in an Incompressible Media, Rus. J. Nonlin. Dyn., 2008, vol. 4, no. 4, pp. 417–428 (Russian).
Dyson, F. W., The Potential of an Anchor Ring, Philos. Trans. Roy. Soc. London Ser. A, 1893, vol. 184, pp. 43–95.
Dyson, F. W., The Potential of an Anchor Ring: P. 2, Philos. Trans. Roy. Soc. London Ser. A, 1893, vol. 184, pp. 1041–1106.
Fraenkel, L.E., On Steady Vortex Rings of Small Cross-Section in an Ideal Fluid, Proc. R. Soc. London Ser. A, 1970, vol. 316, pp. 29–62.
Fraenkel, L.E., Examples of Steady Vortex Rings of Small Cross-Section in an Ideal Fluid, J. Fluid Mech., 1972, vol. 51, pp. 119–135.
Fraenkel, L.E. and Berger, M. S., A Global Theory of Steady Vortex Rings in an Ideal Fluid, Acta Math., 1974, vol. 132, pp. 13–51.
Grinchenko, V.T., Meleshko, V.V., Gourzhii, A. A., van Heijst, G. J.F., and Eisenga, A. H. M., Two Approaches to the Analysis of the Coaxial Interaction of Vortex Rings, Appl. Hydromech., 2000, vol. 2, no. 3, pp. 40–52 (Russian).
Gröbli, W., Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden, Vierteljschr. Naturf. Ges. Zürich, 1877, vol. 22, pp. 37–82, 129–168.
Gurzhii, A.A., Konstantinov, M.Yu., and Meleshko, V.V., Interaction of Coaxial Vortex Rings in an Ideal Fluid, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1988, no. 2, pp. 78–84 [Fluid Dynam., 1988, vol. 23, no. 2, pp. 224–229].
Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 1858, vol. 55, pp. 25–55
Hicks, W.M., On the Steady Motion of a Hollow Vortex, Proc. R. Soc. London, 1883, vol. 35, pp. 304–308.
Hicks, W. M., Researches on the Theory of Vortex Rings: P. 2, Philos. Trans. Roy. Soc. London Ser. A, 1885, vol. 176, pp. 725–780.
Hicks, W.M., On the Mutual Threading of Vortex Rings, Proc. R. Soc. London Ser. A, 1922, vol. 102, pp. 111–113.
Hicks, W.M., Researches in Vortex Motion: P. 3. On Spiral or Gyrostatic Vortex Aggregates, Philos. Trans. Roy. Soc. London Ser. A, 1899, vol. 192, pp. 33–99.
Hill, M. J. M., On a Spherical Vortex, Philos. Trans. Roy. Soc. London Ser. A, 1894, vol. 185, pp. 213–245.
Konstantinov, M., Chaotic Phenomena in the Interaction of Vortex Rings, Phys. Fluids, 1994, vol. 6, no. 5, pp. 1752–1767.
Lamb, H., Hydrodynamics, 6th ed. Cambridge: Cambridge Univ. Press, 1932.
Levy, H. and Forsdyke, A.G., The Stability of an Infinite System of Circular Vortices, Proc. R. Soc. London Ser. A, 1927, vol. 114, pp. 594–604.
Levy, H. and Forsdyke, A.G., The Vibrations of an Infinite System of Vortex Rings, Proc. R. Soc. London Ser. A, 1927, vol. 116, pp. 352–379.
Llewellyn Smith, S.G. and Hattori, Y., Axisymmetric Magnetic Vortices with Swirl, Commun. Nonlinear Sci. Numer. Simul., 2012, vol. 17, no. 5, pp. 2101–2107.
Maxwell, J. C., Letter to William Thomson, 6 October 1868, in The Scientific Letters and Papers of James Clerk Maxwell: Vol. 2, P.M. Harman (Ed.), Cambridge: Cambridge Univ. Press, 1990, pp. 446–448.
Maxwell, J.C., A Treatise on Electricity and Magnetism: In 2 Vols, Oxford: Clarendon, 1873.
Maxworthy, T., Some Experimental Studies of Vortex Rings, J. Fluid Mech., 1977, vol. 81, pp. 465–495.
Meleshko, V.V., Coaxial Axisymmetric Vortex Rings: 150 Years after Helmholtz, Theor. Comput. Fluid Dynam., 2010, vol. 24, pp. 403–431.
Moore, D. W. and Saffman, P. G., A Note on the Stability of a Vortex Ring of Small Cross-Section, Proc. R. Soc. London Ser. A, 1974, vol. 338, no. 1615, pp. 535–537.
Novikov, E. A., Generalized Dynamics of Three-Dimensional Vortical Singularities (Vortons), Zh. Eksp. Teor. Fiz., 1983, vol. 84, no. 3, pp. 975–981 [J. Exp. Theor. Phys., 1983, vol. 57, no. 3, pp. 566–569].
Novikov, E.A., Hamiltonian Description of Axisymmetric Vortex Flows and the System of Vortex Rings, Phys. Fluids, 1985, vol. 28, no. 9, pp. 2921–2922.
Pocklington, H.C., The Complete System of the Periods of a Hollow Vortex Ring, Philos. Trans. Roy. Soc. London Ser. A, 1895, vol. 186, pp. 603–619.
Roberts, P.H. and Donnelly, R. J., Dynamics of Vortex Rings, Phys. Lett. A, 1970, vol. 31, pp. 137–138.
Saffman, P.G., Vortex Dynamics, Cambridge: Cambridge Univ. Press, 1992.
Sharlier, C. L., Die Mechanik des Himmels, Berlin: Walter de Gryter, 1927.
Shashikanth, B.N., Marsden, J. E., Leapfrogging Vortex Rings: Hamiltonian Structure, Geometric Phases and Discrete Reduction, Fluid Dyn. Research, 2003, vol. 33, pp. 333–356.
Shashikanth, B.N., Symmetric Pairs of Point Vortices Interacting with a Neutrally Buoyant 2-dimensional Circular Cylinder, Phys. Fluids 2006, vol. 18, 127103 (17 p.).
Shashikanth, B.N., Sheshmani, A., Kelly, S.D., Marsden, J.E. Hamiltonian Structure for a Neutrally Buoyant Rigid Body Interacting with N Vortex Rings of Arbitrary Shape: The Case of Arbitrary Smooth Body Shape, Theor. Comput. Fluid Dyn., 2008, vol. 22, no. 1, pp. 37–64
Simó, C., Dynamical Properties of the Figure Eight Solution of the Three-Body Problem, in Celestial Mechanics (Evanston, IL, 1999), Contemp. Math., vol. 292, Providence, RI: AMS, 2002, pp. 209–228.
Simó, C. and Stuchi, T. J., Central Stable/Unstable Manifolds and the Destruction of KAM Tori in the Planar Hill Problem, Phys. D, 2000, vol. 140, nos. 1–2, pp. 1–32.
Thomson, J. J., On the Vibrations of a Vortex Ring, and the Action upon Each Other of Two Vortices in a Perfect Fluid, Philos. Trans. Roy. Soc. London, 1882, vol. 173, pp. 493–521.
Vasilev, N. S., On the Motion of an Infinite Row of Coaxial Circular Vortex Rings with the Same Initial Radii, Zap. Fiz.-Mat. Fak. Imp. Novoross. Univ., 1914, vol. 10, pp. 1–44 (Russian).
Vasilev, N. S., Reduction of the Equations of Motion of Coaxial Vortex Rings to Canonical Form, Zap. Fiz.-Mat. Fak. Imp. Novoross. Univ., 1913, vol. 21, pp. 1–12 (Russian).