The dynamics of physics in PET
Tóm tắt
From a technical perspective, there are fundamentally two forces driving the evolution of instrumentation in positron emission tomography (PET) and nuclear medicine generally: clinical needs and technical innovation. This essay considers some of the dynamics of these forces as they act on physics-related developments in PET and suggests that progress will be greatest if these differing motivations are kept in balance as the field evolves.
Tài liệu tham khảo
Bailey DL: Thirty years from now: future physics contributions in nuclear medicine. EJNMMI Physics 2014,, 1: 4.
Ell PJ: The contribution of medical physics to nuclear medicine: a physician’s perspective. EJNMMI Physics 2014,, 1: 3.
Hutton BF: The contribution of medical physics to nuclear medicine: looking back-a physicist’s perspective. EJNMMI Physics 2014,, 1: 2.
Mankoff DA, Pryma DA: The contribution of physics to nuclear medicine: physicians’ perspective on future directions. EJNMMI Physics 2014,, 1: 5.
Dahlbom M, Hoffman EJ, Hoh CK, Schiepers C, Rosenqvist G, Hawkins RA, Phelps ME: Whole-body positron emission tomography: part I Methods and performance characteristics. J Nucl Med 1992,33(6):1191–1199.
Siemens Healthcare: First comprehensive amyloid imaging solution. [http://www.healthcare.siemens.com/molecular-imaging/first-comprehensive-amyloid-imaging-solution]
Jones T: Historical development of functional in vivo studies using positron-emitting tracers. In Positron Emission Tomography: Basic Sciences. Edited by: Valk PE, Bailey DL, Townsend DW, Maisey MN. New York: Springer; 2003:3–40.
Badawi RD, Marsden PK, Cronin BF, Sutcliffe JL, Maisey MN: Optimization of noise-equivalent count rates in 3D PET. Phys Med Biol 1996,41(9):1755–1776.
Philips Healthcare: Vereos PET-CT—radiology. [http://www.healthcare.philips.com/us_en/clinicalspecialities/radiology/solutions/vereos.html#module=USP1b]
Middle East Business News and Information: GE healthcare presents innovative technologies to advance cancer diagnosis in the Middle East at Arab Health 2014. [http://mid-east.info/ge-healthcare-presentsinnovative-technologies-to-advance-cancer-diagnosis-in-the-middle-east-at-arab-health-2014–16775]
Pichler BJ, Miller SM, Hamill JJ, Gremillion T, Weber WA, Bendriem B: Evaluation of the NaI-LSO-hybrid detector PET-SPECT system: dual isotope scans and first patient studies. Eur J Nucl Med Mol Imaging 2002,29(1 Sup):109.
Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R: A combined PET/CT scanner for clinical oncology. J Nucl Med 2000,41(8):1369–1379.
Moses WW: Time of flight in PET revisited. IEEE Trans Nuc Sci 2003,50(5):1325–1330.
Rezaei A, Defrise M, Bal G, Michel C, Conti M, Watson C, Nuyts J: Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Img 2012,31(12):2224–2233.
Nuyts J, Bal G, Kehren F, Fenchel M, Michel C, Watson C: Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Img 2013,32(2):237–246.
Watson CC: Supplemental transmission method for improved PET attenuation correction on an integrated MR/PET. Nucl Instrum Methods Phys Res A 2014,734(B):191–195.
Mollet P, Keereman V, Clementel E, Vandenberghe S: Simultaneous MR-compatible emission and transmission imaging for PET using time-of-flight information. IEEE Trans Med Img 2012,31(9):1734–1742.